cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A274372 Number T(n,k) of modified skew Dyck paths of semilength n such that the area between the x-axis and the path is k; triangle T(n,k), n>=0, n<=k<=n^2, read by rows.

Original entry on oeis.org

1, 1, 1, 0, 1, 1, 0, 2, 1, 1, 0, 1, 1, 0, 3, 2, 3, 1, 3, 2, 2, 1, 1, 0, 1, 1, 0, 4, 3, 7, 4, 7, 5, 8, 6, 6, 3, 5, 4, 3, 2, 2, 1, 1, 0, 1, 1, 0, 5, 4, 12, 10, 17, 12, 20, 18, 22, 14, 19, 16, 18, 14, 14, 12, 12, 7, 8, 7, 5, 4, 3, 2, 2, 1, 1, 0, 1
Offset: 0

Views

Author

Alois P. Heinz, Jun 19 2016

Keywords

Comments

A modified skew Dyck path is a path in the first quadrant which begins at the origin, ends on the x-axis, consists of steps U=(1,1) (up), D=(1,-1) (down) and A=(-1,1) (anti-down) so that A and D steps do not overlap.

Examples

			T(3,3) = 1:   /\/\/\
.
                 /\         /\
T(3,5) = 2:   /\/  \   ,   /  \/\
.
              /\
              \ \
T(3,6) = 1:   /  \
.
               /\/\
T(3,7) = 1:   /    \
.
                /\
               /  \
T(3,9) = 1:   /    \
.
Triangle T(n,k) begins:
n\k: 0 1 2 3 4 5 6 7 8 9 . . . . . .16 . . . . . . . .25
---+----------------------------------------------------
00 : 1
01 :   1
02 :     1 0 1
03 :       1 0 2 1 1 0 1
04 :         1 0 3 2 3 1 3 2 2 1 1 0 1
05 :           1 0 4 3 7 4 7 5 8 6 6 3 5 4 3 2 2 1 1 0 1
		

Crossrefs

Row sums give: A230823.
Column sums give: A274376.
Cf. A000217, A002061 (number of terms in row n), A129172, A274054, A274373.

Programs

  • Maple
    b:= proc(x, y, t, n) option remember; expand(`if`(y>n, 0,
          `if`(n=y, `if`(t=2, 0, 1), b(x+1, y+1, 0, n-1)*z^
          (2*y+1)+`if`(t<>1 and x>0, b(x-1, y+1, 2, n-1), 0)+
          `if`(t<>2 and y>0, b(x+1, y-1, 1, n-1), 0))))
        end:
    T:= n-> (p-> seq(coeff(p, z, i), i=n..n^2))(b(0$3, 2*n)):
    seq(T(n), n=0..8);
  • Mathematica
    b[x_, y_, t_, n_] := b[x, y, t, n] = Expand[If[y>n, 0, If[n == y, If[t == 2, 0, 1], b[x+1, y+1, 0, n-1]*z^(2*y+1) + If[t != 1 && x>0, b[x-1, y+1, 2, n-1], 0] + If[t != 2 && y>0, b[x+1, y-1, 1, n-1], 0]]]]; T[n_] := Function[p, Table[Coefficient[p, z, i], {i, n, n^2}]][b[0, 0, 0, 2*n]]; Table[T[n], {n, 0, 8}] // Flatten (* Jean-François Alcover, Jan 25 2017, translated from Maple *)

Formula

Sum_{k=n..n^2} k * T(n,k) = A274373(n).
T(n,n) = T(n,n^2) = 1.
T(n,n+1) = T(n,n^2-1) = 0.
T(n,n*(n+1)/2) = T(n,A000217(n)) = A274054(n).

A274404 Number T(n,k) of modified skew Dyck paths of semilength n with exactly k anti-down steps; triangle T(n,k), n>=0, 0<=k<=n-floor((1+sqrt(max(0,8n-7)))/2), read by rows.

Original entry on oeis.org

1, 1, 2, 5, 1, 14, 6, 42, 28, 3, 132, 120, 28, 1, 429, 495, 180, 20, 1430, 2002, 990, 195, 10, 4862, 8008, 5005, 1430, 165, 4, 16796, 31824, 24024, 9009, 1650, 117, 1, 58786, 125970, 111384, 51688, 13013, 1617, 70, 208012, 497420, 503880, 278460, 89180, 16016, 1386, 35
Offset: 0

Views

Author

Alois P. Heinz, Jun 20 2016

Keywords

Comments

A modified skew Dyck path is a path in the first quadrant which begins at the origin, ends on the x-axis, consists of steps U=(1,1) (up), D=(1,-1) (down) and A=(-1,1) (anti-down) so that A and D steps do not overlap.

Examples

			              /\
              \ \
T(3,1) = 1:   /  \
.
Triangle T(n,k) begins:
:     1;
:     1;
:     2;
:     5,     1;
:    14,     6;
:    42,    28,     3;
:   132,   120,    28,    1;
:   429,   495,   180,   20;
:  1430,  2002,   990,  195,   10;
:  4862,  8008,  5005, 1430,  165,   4;
: 16796, 31824, 24024, 9009, 1650, 117, 1;
		

Crossrefs

Columns k=0-3 give: A000108, A002694(n-1), A074922(n-2), A232224(n-3).
Row sums give A230823.
Last elements of rows give A092392(n-1) for n>0.

Programs

  • Maple
    b:= proc(x, y, t, n) option remember; expand(`if`(y>n, 0,
          `if`(n=y, `if`(t=2, 0, 1), b(x+1, y+1, 0, n-1)+
          `if`(t<>1 and x>0, b(x-1, y+1, 2, n-1)*z, 0)+
          `if`(t<>2 and y>0, b(x+1, y-1, 1, n-1), 0))))
        end:
    T:= n-> (p-> seq(coeff(p, z, i), i=0..degree(p)))(b(0$3, 2*n)):
    seq(T(n), n=0..14);
  • Mathematica
    b[x_, y_, t_, n_] := b[x, y, t, n] = Expand[If[y > n, 0,
         If[n == y, If[t == 2, 0, 1], b[x + 1, y + 1, 0, n - 1] +
         If[t != 1 && x > 0, b[x - 1, y + 1, 2, n - 1] z, 0] +
         If[t != 2 && y > 0, b[x + 1, y - 1, 1, n - 1], 0]]]];
    T[n_] := CoefficientList[b[0, 0, 0, 2n], z];
    T /@ Range[0, 14] // Flatten (* Jean-François Alcover, Mar 27 2021, after Alois P. Heinz *)

Formula

Sum_{k>0} k * T(n,k) = A274405(n).

A274373 Sum of the areas of all modified skew Dyck paths of semilength n.

Original entry on oeis.org

0, 1, 6, 35, 188, 989, 5131, 26411, 135229, 689814, 3509014, 17811637, 90256685, 456719880, 2308440442, 11656409995, 58809893357, 296500180806, 1493924791698, 7523064390774, 37866103978109, 190510720248534, 958122016323881, 4816944544836927, 24209532464417585
Offset: 0

Views

Author

Alois P. Heinz, Jun 19 2016

Keywords

Comments

A modified skew Dyck path is a path in the first quadrant which begins at the origin, ends on the x-axis, consists of steps U=(1,1) (up), D=(1,-1) (down) and A=(-1,1) (anti-down) so that A and D steps do not overlap.
a(n)^(1/n) tends to 5. - Vaclav Kotesovec, Jun 26 2016

Examples

			a(3) = 35 = 9+7+5+6+5+3 = sum of the areas of UUUDDD, UUDUDD, UUDDUD, UAUDDD, UDUUDD, UDUDUD, respectively.
		

Crossrefs

Programs

  • Maple
    b:= proc(x, y, t, n) option remember; `if`(y>n, 0, `if`(n=y,
         `if`(t=2, 0, [1, 0]), (p-> p+[0, p[1]*(2*y+1)])(b(x+1, y
          +1, 0, n-1))+`if`(t<>1 and x>0, b(x-1, y+1, 2, n-1), 0)
          +`if`(t<>2 and y>0, b(x+1, y-1, 1, n-1), 0)))
        end:
    a:= n-> b(0$3, 2*n)[2]:
    seq(a(n), n=0..30);
  • Mathematica
    b[x_, y_, t_, n_] := b[x, y, t, n] = If[y > n, 0, If[n == y, If[t == 2, {0, 0}, {1, 0}], Function[p, p + {0, p[[1]] (2y + 1)}][b[x + 1, y + 1, 0, n - 1]] + If[t != 1 && x > 0, b[x - 1, y + 1, 2, n - 1], 0] + If[t != 2 && y > 0, b[x + 1, y - 1, 1, n - 1], 0]]];
    a[n_] := b[0, 0, 0, 2 n][[2]];
    a /@ Range[0, 30] (* Jean-François Alcover, Dec 29 2020, after Alois P. Heinz *)

Formula

a(n) = Sum_{k=n..n^2} k * A274372(n,k).

A274405 Number of anti-down steps in all modified skew Dyck paths of semilength n.

Original entry on oeis.org

0, 0, 0, 1, 6, 34, 179, 915, 4607, 22988, 114090, 564359, 2785921, 13735074, 67665208, 333211828, 1640575047, 8077199130, 39770520844, 195852723348, 964689515033, 4752800817185, 23422061819883, 115456855588378, 569293729146929, 2807864888917275
Offset: 0

Views

Author

Alois P. Heinz, Jun 20 2016

Keywords

Comments

A modified skew Dyck path is a path in the first quadrant which begins at the origin, ends on the x-axis, consists of steps U=(1,1) (up), D=(1,-1) (down) and A=(-1,1) (anti-down) so that A and D steps do not overlap.

Crossrefs

Programs

  • Maple
    b:= proc(x, y, t, n) option remember; `if`(y>n, 0, `if`(n=y,
          `if`(t=2, 0, [1, 0]), b(x+1, y+1, 0, n-1)+`if`(t<>1
           and x>0, (p-> p+[0, p[1]])(b(x-1, y+1, 2, n-1)), 0)+
          `if`(t<>2 and y>0, b(x+1, y-1, 1, n-1), 0)))
        end:
    a:= n-> b(0$3, 2*n)[2]:
    seq(a(n), n=0..30);
  • Mathematica
    b[x_, y_, t_, n_] := b[x, y, t, n] = If[y > n, 0, If[n == y, If[t == 2, {0, 0}, {1, 0}], b[x + 1, y + 1, 0, n - 1] + If[t != 1 && x > 0, Function[p, p + {0, p[[1]]}][b[x - 1, y + 1, 2, n - 1]], 0] + If[t != 2 && y > 0, b[x + 1, y - 1, 1, n - 1], 0]]];
    a[n_] := b[0, 0, 0, 2 n][[2]];
    a /@ Range[0, 30] (* Jean-François Alcover, Dec 29 2020, after Alois P. Heinz *)

Formula

a(n) = Sum_{k>0} k * A274404(n,k).
a(n) ~ c * 5^n / sqrt(n), where c = 0.0554525135364274199547478570703521322323... . - Vaclav Kotesovec, Jun 26 2016

A355040 Expansion of the continued fraction 1 / (1-q / (1-q-q^2 / (1-q-q^2-q^3 / (1-q-q^2-q^3-q^4 / (...))))).

Original entry on oeis.org

1, 1, 2, 5, 13, 35, 96, 266, 742, 2079, 5843, 16457, 46423, 131099, 370527, 1047858, 2964698, 8390837, 23754234, 67260645, 190478213, 539484321, 1528094423, 4328632609, 12262352881, 34738763766, 98416624789, 278825903115, 789961599608, 2238129694407, 6341171821627, 17966261019890, 50903653156245
Offset: 0

Views

Author

Joerg Arndt, Jun 16 2022

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[1/(1 - x/(1 - x + ContinuedFractionK[-x^k, 1 - x*(1 - x^k)/(1 - x), {k, 2, nmax}])), {x, 0, nmax}], x] (* Vaclav Kotesovec, Jun 16 2022 *)
    A355040List[nmax_] := Module[{a, b, q},
    a = ContinuedFractionK[-q^k, (q^(k + 1) - 2 q + 1)/(q - 1), {k, 0, nmax}];
    b = Series[a, {q, 0, nmax}]; CoefficientList[b, q] ];
    A355040List[32] (* Peter Luschny, Jun 20 2022 *)
  • PARI
    N=44; q='q+O('q^N);
    f(n) = 1 - sum(k=1,n-1,q^k);
    s=1; forstep(j=N, 1, -1, s = q^j/s; s = f(j) - s ); s = 1/s;
    Vec(s)

Formula

a(n) ~ c * d^n, where d = 2.8333645039948803621658813720055524872119... and c = 0.1710130167563241590871776261530008679... - Vaclav Kotesovec, Jun 16 2022
a(n) = [q^n] K_{k>=0} -q^k / ((q^(k + 1) - 2*q + 1)/(q - 1)), where K is Gauss's notation for continued fractions. - Peter Luschny, Jun 20 2022

A274054 Number of modified skew Dyck paths of semilength n such that the area between the x-axis and the path is n*(n+1)/2.

Original entry on oeis.org

1, 1, 0, 1, 3, 6, 14, 40, 140, 422, 1346, 4487, 15234, 52632, 183913, 651948, 2336751, 8438406, 30712379, 112603500, 415459873, 1541646225, 5750112809, 21548036621, 81096740799, 306404247854, 1161863199131, 4420429256826, 16869986745367, 64567073382731
Offset: 0

Views

Author

Alois P. Heinz, Jun 19 2016

Keywords

Comments

A modified skew Dyck path is a path in the first quadrant which begins at the origin, ends on the x-axis, consists of steps U=(1,1) (up), D=(1,-1) (down) and A=(-1,1) (anti-down) so that A and D steps do not overlap.

Examples

			a(1) = 1:   /\
.
            /\
            \ \
a(3) = 1:   /  \
.
                /\                          /\
               /  \         /\/\/\         /  \
a(4) = 3:   /\/    \   ,   /      \   ,   /    \/\   .
		

Crossrefs

Formula

a(n) = A274372(n,n*(n+1)/2) = A274372(n,A000217(n)).

A274376 Number of modified skew Dyck paths such that the area between the x-axis and the path is n.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 5, 8, 12, 20, 32, 52, 84, 135, 219, 353, 572, 924, 1495, 2419, 3912, 6331, 10240, 16570, 26807, 43374, 70178, 113546, 183721, 297258, 480974, 778220, 1259184, 2037389, 3296554, 5333923, 8630446, 13964340, 22594740, 36559034, 59153708, 95712668
Offset: 0

Views

Author

Alois P. Heinz, Jun 19 2016

Keywords

Comments

A modified skew Dyck path is a path in the first quadrant which begins at the origin, ends on the x-axis, consists of steps U=(1,1) (up), D=(1,-1) (down) and A=(-1,1) (anti-down) so that A and D steps do not overlap.

Examples

			               /\    /\
a(5) = 3:   /\/  \  /  \/\  /\/\/\/\/\  .
.
            /\
            \ \    /\          /\          /\
a(6) = 5:   /  \  /  \/\/\  /\/  \/\  /\/\/  \  /\/\/\/\/\/\  .
		

Crossrefs

Column sums of A274372.
Cf. A230823.

Formula

a(n) = Sum_{k=0..n} A274372(k,n).
Showing 1-7 of 7 results.