cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A274404 Number T(n,k) of modified skew Dyck paths of semilength n with exactly k anti-down steps; triangle T(n,k), n>=0, 0<=k<=n-floor((1+sqrt(max(0,8n-7)))/2), read by rows.

Original entry on oeis.org

1, 1, 2, 5, 1, 14, 6, 42, 28, 3, 132, 120, 28, 1, 429, 495, 180, 20, 1430, 2002, 990, 195, 10, 4862, 8008, 5005, 1430, 165, 4, 16796, 31824, 24024, 9009, 1650, 117, 1, 58786, 125970, 111384, 51688, 13013, 1617, 70, 208012, 497420, 503880, 278460, 89180, 16016, 1386, 35
Offset: 0

Views

Author

Alois P. Heinz, Jun 20 2016

Keywords

Comments

A modified skew Dyck path is a path in the first quadrant which begins at the origin, ends on the x-axis, consists of steps U=(1,1) (up), D=(1,-1) (down) and A=(-1,1) (anti-down) so that A and D steps do not overlap.

Examples

			              /\
              \ \
T(3,1) = 1:   /  \
.
Triangle T(n,k) begins:
:     1;
:     1;
:     2;
:     5,     1;
:    14,     6;
:    42,    28,     3;
:   132,   120,    28,    1;
:   429,   495,   180,   20;
:  1430,  2002,   990,  195,   10;
:  4862,  8008,  5005, 1430,  165,   4;
: 16796, 31824, 24024, 9009, 1650, 117, 1;
		

Crossrefs

Columns k=0-3 give: A000108, A002694(n-1), A074922(n-2), A232224(n-3).
Row sums give A230823.
Last elements of rows give A092392(n-1) for n>0.

Programs

  • Maple
    b:= proc(x, y, t, n) option remember; expand(`if`(y>n, 0,
          `if`(n=y, `if`(t=2, 0, 1), b(x+1, y+1, 0, n-1)+
          `if`(t<>1 and x>0, b(x-1, y+1, 2, n-1)*z, 0)+
          `if`(t<>2 and y>0, b(x+1, y-1, 1, n-1), 0))))
        end:
    T:= n-> (p-> seq(coeff(p, z, i), i=0..degree(p)))(b(0$3, 2*n)):
    seq(T(n), n=0..14);
  • Mathematica
    b[x_, y_, t_, n_] := b[x, y, t, n] = Expand[If[y > n, 0,
         If[n == y, If[t == 2, 0, 1], b[x + 1, y + 1, 0, n - 1] +
         If[t != 1 && x > 0, b[x - 1, y + 1, 2, n - 1] z, 0] +
         If[t != 2 && y > 0, b[x + 1, y - 1, 1, n - 1], 0]]]];
    T[n_] := CoefficientList[b[0, 0, 0, 2n], z];
    T /@ Range[0, 14] // Flatten (* Jean-François Alcover, Mar 27 2021, after Alois P. Heinz *)

Formula

Sum_{k>0} k * T(n,k) = A274405(n).
Showing 1-1 of 1 results.