cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A274373 Sum of the areas of all modified skew Dyck paths of semilength n.

Original entry on oeis.org

0, 1, 6, 35, 188, 989, 5131, 26411, 135229, 689814, 3509014, 17811637, 90256685, 456719880, 2308440442, 11656409995, 58809893357, 296500180806, 1493924791698, 7523064390774, 37866103978109, 190510720248534, 958122016323881, 4816944544836927, 24209532464417585
Offset: 0

Views

Author

Alois P. Heinz, Jun 19 2016

Keywords

Comments

A modified skew Dyck path is a path in the first quadrant which begins at the origin, ends on the x-axis, consists of steps U=(1,1) (up), D=(1,-1) (down) and A=(-1,1) (anti-down) so that A and D steps do not overlap.
a(n)^(1/n) tends to 5. - Vaclav Kotesovec, Jun 26 2016

Examples

			a(3) = 35 = 9+7+5+6+5+3 = sum of the areas of UUUDDD, UUDUDD, UUDDUD, UAUDDD, UDUUDD, UDUDUD, respectively.
		

Crossrefs

Programs

  • Maple
    b:= proc(x, y, t, n) option remember; `if`(y>n, 0, `if`(n=y,
         `if`(t=2, 0, [1, 0]), (p-> p+[0, p[1]*(2*y+1)])(b(x+1, y
          +1, 0, n-1))+`if`(t<>1 and x>0, b(x-1, y+1, 2, n-1), 0)
          +`if`(t<>2 and y>0, b(x+1, y-1, 1, n-1), 0)))
        end:
    a:= n-> b(0$3, 2*n)[2]:
    seq(a(n), n=0..30);
  • Mathematica
    b[x_, y_, t_, n_] := b[x, y, t, n] = If[y > n, 0, If[n == y, If[t == 2, {0, 0}, {1, 0}], Function[p, p + {0, p[[1]] (2y + 1)}][b[x + 1, y + 1, 0, n - 1]] + If[t != 1 && x > 0, b[x - 1, y + 1, 2, n - 1], 0] + If[t != 2 && y > 0, b[x + 1, y - 1, 1, n - 1], 0]]];
    a[n_] := b[0, 0, 0, 2 n][[2]];
    a /@ Range[0, 30] (* Jean-François Alcover, Dec 29 2020, after Alois P. Heinz *)

Formula

a(n) = Sum_{k=n..n^2} k * A274372(n,k).