A274373 Sum of the areas of all modified skew Dyck paths of semilength n.
0, 1, 6, 35, 188, 989, 5131, 26411, 135229, 689814, 3509014, 17811637, 90256685, 456719880, 2308440442, 11656409995, 58809893357, 296500180806, 1493924791698, 7523064390774, 37866103978109, 190510720248534, 958122016323881, 4816944544836927, 24209532464417585
Offset: 0
Keywords
Examples
a(3) = 35 = 9+7+5+6+5+3 = sum of the areas of UUUDDD, UUDUDD, UUDDUD, UAUDDD, UDUUDD, UDUDUD, respectively.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..500
Programs
-
Maple
b:= proc(x, y, t, n) option remember; `if`(y>n, 0, `if`(n=y, `if`(t=2, 0, [1, 0]), (p-> p+[0, p[1]*(2*y+1)])(b(x+1, y +1, 0, n-1))+`if`(t<>1 and x>0, b(x-1, y+1, 2, n-1), 0) +`if`(t<>2 and y>0, b(x+1, y-1, 1, n-1), 0))) end: a:= n-> b(0$3, 2*n)[2]: seq(a(n), n=0..30);
-
Mathematica
b[x_, y_, t_, n_] := b[x, y, t, n] = If[y > n, 0, If[n == y, If[t == 2, {0, 0}, {1, 0}], Function[p, p + {0, p[[1]] (2y + 1)}][b[x + 1, y + 1, 0, n - 1]] + If[t != 1 && x > 0, b[x - 1, y + 1, 2, n - 1], 0] + If[t != 2 && y > 0, b[x + 1, y - 1, 1, n - 1], 0]]]; a[n_] := b[0, 0, 0, 2 n][[2]]; a /@ Range[0, 30] (* Jean-François Alcover, Dec 29 2020, after Alois P. Heinz *)
Formula
a(n) = Sum_{k=n..n^2} k * A274372(n,k).
Comments