A274404 Number T(n,k) of modified skew Dyck paths of semilength n with exactly k anti-down steps; triangle T(n,k), n>=0, 0<=k<=n-floor((1+sqrt(max(0,8n-7)))/2), read by rows.
1, 1, 2, 5, 1, 14, 6, 42, 28, 3, 132, 120, 28, 1, 429, 495, 180, 20, 1430, 2002, 990, 195, 10, 4862, 8008, 5005, 1430, 165, 4, 16796, 31824, 24024, 9009, 1650, 117, 1, 58786, 125970, 111384, 51688, 13013, 1617, 70, 208012, 497420, 503880, 278460, 89180, 16016, 1386, 35
Offset: 0
Examples
/\ \ \ T(3,1) = 1: / \ . Triangle T(n,k) begins: : 1; : 1; : 2; : 5, 1; : 14, 6; : 42, 28, 3; : 132, 120, 28, 1; : 429, 495, 180, 20; : 1430, 2002, 990, 195, 10; : 4862, 8008, 5005, 1430, 165, 4; : 16796, 31824, 24024, 9009, 1650, 117, 1;
Links
- Alois P. Heinz, Rows n = 0..160, flattened
Crossrefs
Programs
-
Maple
b:= proc(x, y, t, n) option remember; expand(`if`(y>n, 0, `if`(n=y, `if`(t=2, 0, 1), b(x+1, y+1, 0, n-1)+ `if`(t<>1 and x>0, b(x-1, y+1, 2, n-1)*z, 0)+ `if`(t<>2 and y>0, b(x+1, y-1, 1, n-1), 0)))) end: T:= n-> (p-> seq(coeff(p, z, i), i=0..degree(p)))(b(0$3, 2*n)): seq(T(n), n=0..14);
-
Mathematica
b[x_, y_, t_, n_] := b[x, y, t, n] = Expand[If[y > n, 0, If[n == y, If[t == 2, 0, 1], b[x + 1, y + 1, 0, n - 1] + If[t != 1 && x > 0, b[x - 1, y + 1, 2, n - 1] z, 0] + If[t != 2 && y > 0, b[x + 1, y - 1, 1, n - 1], 0]]]]; T[n_] := CoefficientList[b[0, 0, 0, 2n], z]; T /@ Range[0, 14] // Flatten (* Jean-François Alcover, Mar 27 2021, after Alois P. Heinz *)
Formula
Sum_{k>0} k * T(n,k) = A274405(n).
Comments