A274441 Decimal expansion of Q(3), value of one of five integrals related to Quantum Field Theory (see the paper by David Broadhurst).
2, 0, 3, 4, 3, 6, 8, 9, 7, 1, 3, 1, 7, 2, 0, 4, 4, 4, 7, 1, 5, 4, 1, 0, 0, 4, 8, 2, 3, 2, 7, 0, 6, 9, 9, 8, 1, 9, 7, 6, 9, 5, 0, 4, 7, 3, 6, 5, 1, 2, 8, 6, 4, 5, 7, 0, 8, 4, 4, 3, 7, 2, 3, 9, 3, 8, 0, 6, 5, 7, 3, 4, 1, 9, 6, 4, 9, 6, 6, 2, 4, 5, 6, 2, 2, 3, 9, 0, 3, 6, 7, 8, 3, 6, 5, 5, 0, 1, 4, 2, 5
Offset: 1
Examples
2.03436897131720444715410048232706998197695047365128645708443723938...
Links
- David J. Broadhurst, Massive 3-loop Feynman diagrams reducible to SC* primitives of algebras of the sixth root of unity, arXiv:hep-th/9803091, 1998, p. 12.
- Eric Weisstein's MathWorld, Clausen's Integral
Programs
-
Mathematica
digits = 101; Cl2[x_] := (I/2)*(PolyLog[2, Exp[-I*x]] - PolyLog[2, Exp[I*x]]); U = A255685 = Pi^4/180 + (Pi^2/12)*Log[2]^2 - (1/12)*Log[2]^4 - 2*PolyLog[4, 1/2]; v[k_] := ((-1)^k*((24*(k - 1)*(3*k - 4))/(3*k - 2)^3 + (8*(3*k*(3*k - 5) + 4))/(27*(k - 1)^3) + PolyGamma[2, (3*k)/2 - 1] - PolyGamma[2, (3*(k - 1))/2]))/(48*(k - 1)*(3*k - 4)*(3*k - 2)); V = A274400 = 3 Zeta[3]/8 - 1/2 + NSum[v[k], {k, 2, Infinity}, WorkingPrecision -> digits + 10, Method -> "AlternatingSigns"]; Q[3] = -50/9 Cl2[Pi/3]^2 + 596/81 Zeta[4] - 16/9 U + 32/3 V; RealDigits[N[Q[3], digits] // Chop][[1]]
-
PARI
Q(n) = intnum(x=0, oo, acosh((x+2)/2)^2 * log((x+1)/x)/(x+n)); Q(3) \\ Gheorghe Coserea, Sep 30 2018
-
PARI
clausen(n, x) = my(z = polylog(n, exp(I*x))); if (n%2, real(z), imag(z)); polygamma(n, x) = if (n == 0, psi(x), (-1)^(n+1)*n!*zetahurwitz(n+1, x)); u31=Pi^4/180 + (Pi^2/12)*log(2)^2 - (1/12)*log(2)^4 - 2*polylog(4, 1/2); v31=3*zeta(3)/8 - 1/2 + sumalt(k=2, (-1)^k*((24*(k-1)*(3*k-4))/(3*k-2)^3 + (8*(3*k*(3*k-5)+4))/(27*(k-1)^3) + polygamma(2, (3*k)/2-1) - polygamma(2, (3*(k-1))/2))/(48*(k-1)*(3*k-4)*(3*k-2))); -50/9*clausen(2, Pi/3)^2 + 596/81*zeta(4) - 16/9*u31 + 32/3*v31 \\ Gheorghe Coserea, Sep 30 2018