cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A274503 a(n) = 301*binomial(n-1,8)+52*binomial(n-1,7)+binomial(n-1,6).

Original entry on oeis.org

0, 0, 1, 59, 745, 4665, 19995, 67287, 191103, 478335, 1085370, 2276560, 4476758, 8340982, 14844570, 25397490, 41986770, 67351314, 105193671, 160433625, 239508775, 350727575, 504680605, 714716145, 997486425, 1373571225, 1868185800, 2511980406, 3341939004
Offset: 5

Views

Author

Vincenzo Librandi, Jun 25 2016

Keywords

Crossrefs

Programs

  • Magma
    [301*Binomial(n-1,8)+52*Binomial(n-1,7)+Binomial(n-1,6): n in [5..40]];
    
  • Maple
    A274503:=n->301*binomial(n-1,8)+52*binomial(n-1,7)+binomial(n-1,6): seq(A274503(n), n=5..50); # Wesley Ivan Hurt, Jun 25 2016
  • Mathematica
    Table[301*Binomial[n-1,8]+52*Binomial[n-1,7]+Binomial[n-1,6], {n, 5, 40}]
  • PARI
    concat([0, 0], Vec(x^7*(1 + 50*x + 250*x^2)/(1-x)^9 + O(x^100))) \\ Altug Alkan, Jun 26 2016

Formula

G.f.: x^7*(1 + 50*x + 250*x^2)/(1-x)^9.
a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9).
a(n) = (n-1)*(n-2)*(n-3)*(n-4)*(n-5)*(n-6)*(301*n^2-4099*n+14000)/40320. - Wesley Ivan Hurt, Jun 25 2016