cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A132381 Number of partitions of n with exactly one prime number.

Original entry on oeis.org

0, 1, 2, 3, 4, 7, 9, 12, 15, 22, 28, 38, 46, 62, 77, 98, 117, 152, 183, 230, 275, 344, 408, 504, 592, 726, 856, 1038, 1212, 1469, 1712, 2048, 2380, 2839, 3288, 3901, 4500, 5313, 6127, 7193, 8254, 9671, 11081, 12909, 14764, 17153, 19566, 22658, 25786, 29762
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 10 2007

Keywords

Examples

			a(10) = #{8+2, 7+1+1+1, 6+3+1, 6+2+2, 6+2+1+1, 5+5, 5+4+1, 5+1+1+1+1+1, 4+4+2, 4+3+3, 4+3+1+1+1, 4+2+2+2, 4+2+2+1+1, 4+2+1+1+1+1, 3+3+3+1, 3+3+1+1+1+1, 3+1+1+1+1+1+1+1, 2+2+2+2+2, 2+2+2+2+1+1, 2+2+2+1+1+1+1, 2+2+1+1+1+1+1+1, 2+1+1+1+1+1+1+1+1} = 22.
		

Crossrefs

Cf. A002095.
Column k=1 of A274517.

Programs

  • Maple
    b:= proc(n, i) option remember; local j; if n=0 then [1, 0] elif i<1
          then [0$2] else b(n, i-1); for j to n/i do zip((x, y)->x+y, %,
          [`if`(isprime(i), 0, NULL), b(n-i*j, i-1)[]], 0) od; %[1..2] fi
        end:
    a:= n-> b(n$2)[2]:
    seq(a(n), n=1..60);  # Alois P. Heinz, May 29 2013
  • Mathematica
    zip = With[{m = Max[Length[#1], Length[#2]]}, PadRight[#1, m] + PadRight[#2, m]]&; b[n_, i_] := b[n, i] = Module[{j, pc}, Which[n == 0, {1, 0}, i<1, {0, 0}, True, pc = b[n, i-1]; For[j = 1, j <= n/i, j++, pc = zip[pc, Join[{If[PrimeQ[i], 0, Nothing]}, b[n-i*j, i-1]]] ]; pc[[1 ;; 2]] ]]; a[n_] := b[n, n][[2]]; Table[a[n], {n, 1, 60}] (* Jean-François Alcover, Feb 12 2017, after Alois P. Heinz *)
Showing 1-1 of 1 results.