A274540 Decimal expansion of exp(sqrt(2)).
4, 1, 1, 3, 2, 5, 0, 3, 7, 8, 7, 8, 2, 9, 2, 7, 5, 1, 7, 1, 7, 3, 5, 8, 1, 8, 1, 5, 1, 4, 0, 3, 0, 4, 5, 0, 2, 4, 0, 1, 6, 6, 3, 9, 4, 3, 1, 5, 1, 1, 0, 9, 6, 1, 0, 0, 6, 8, 3, 6, 4, 7, 0, 9, 8, 5, 1, 5, 0, 9, 7, 8, 5, 8, 3, 0, 8, 0, 7, 3, 2, 7, 9, 1, 6, 5, 0
Offset: 1
Examples
c = 4.113250378782927517173581815140304502401663943151...
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
- The Dev Team and Simon Plouffe, The Inverse Symbolic Calculator (ISC).
- Todd Trimble and Vishal Lama, Continued fraction for e, Todd and Vishal’s blog 2008/08/04
- Index entries for transcendental numbers
Crossrefs
Programs
-
Maple
Digits := 80: evalf(exp(sqrt(2))); # End program 1. P := proc(n) : if n=0 then 1 else P(n) := expand((1/n)*(add(x(n-k)*P(k), k=0..n-1))) fi; end: x := proc(n): if n=1 then (1 + sqrt(2)) else 1 fi: end: Digits := 49; evalf(P(120)); # End program 2.
-
Mathematica
First@ RealDigits@ N[Exp[Sqrt@ 2], 80] (* Michael De Vlieger, Jun 27 2016 *)
-
PARI
my(x=exp(sqrt(2))); for(k=1, 100, my(d=floor(x)); x=(x-d)*10; print1(d, ", ")) \\ Felix Fröhlich, Jun 27 2016
Formula
c = exp(sqrt(2)).
c = lim_{n -> infinity} P(n) with P(n) = (1/n)*Sum_{k=0..n-1} x(n-k)*P(k) for n >= 1, and P(0) = 1, with x(1) = (1 + sqrt(2)), the silver mean A014176, and x(n) = 1 for all other n.
Extensions
More terms from Jon E. Schoenfield, Mar 15 2018
Comments