cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A274542 Decimal expansion of exp(sqrt(2)/3).

Original entry on oeis.org

1, 6, 0, 2, 2, 4, 2, 9, 9, 7, 2, 0, 3, 5, 6, 0, 1, 5, 0, 9, 9, 5, 1, 7, 7, 7, 7, 2, 2, 2, 8, 6, 7, 8, 7, 5, 8, 5, 1, 2, 9, 6, 1, 6, 8, 2, 9, 5, 4, 5, 4, 7, 1, 8, 7, 4, 2, 6, 8, 2, 2, 4, 0, 5, 3, 0, 9, 1, 0, 0, 1, 6, 9, 9, 4, 9, 0, 4, 1, 9, 1, 9, 5, 8, 2
Offset: 1

Views

Author

Johannes W. Meijer, Jun 27 2016

Keywords

Comments

Define P(n) = (1/n)*(sum(x(n-k)*P(k), k=0..n-1)), n >= 1 and P(0) =1 with x(3) = (1 + sqrt(2)) and x(n) = 1 for all other n. We find that C2 = limit(P(n), n -> infinity) = exp(sqrt(2)/3).
The structure of the n!*P(n) formulas leads to the multinomial coefficients A036039.

Examples

			c = 1.6022429972035601509951777722286787585129616829545471874……
		

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); Exp[Sqrt[2]/3]; // G. C. Greubel, Aug 19 2018
  • Maple
    Digits := 85: evalf(exp(sqrt(2)/3)); # End program 1.
    P := proc(n) : if n=0 then 1 else P(n) := expand((1/n)*(add(x(n-k)*P(k), k=0..n-1))) fi; end: x := proc(n): if n=3 then (sqrt(2)+1) else 1 fi: end: Digits := 56; evalf(P(120)); # End program 2.
  • Mathematica
    First@ RealDigits@ N[Exp[Sqrt[2]/3], 85] (* Michael De Vlieger, Jun 27 2016 *)
  • PARI
    my(x=exp(sqrt(2)/3)); for(k=1, 100, my(d=floor(x)); x=(x-d)*10; print1(d, ", ")) \\ Felix Fröhlich, Jun 27 2016
    

Formula

c = exp(sqrt(2)/3)
c = limit(P(n), n -> infinity) with P(n) = (1/n)*(sum(x(n-k)*P(k), k=0..n-1)) for n >= 1, and P(0) =1, with x(3) = (1 + sqrt(2)), the silver mean A014176, and x(n) = 1 for all other n.