cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A274550 The curvature of smallest circle among 4 mutually tangent(externally) circles with integer curvature and primitive (share no common factor).

Original entry on oeis.org

12, 15, 23, 24, 28, 33, 34, 35, 38, 39, 40, 42, 45, 47, 50, 52, 53, 56, 57, 58, 59, 60, 61, 62, 63, 63, 64, 66, 69, 71, 72, 72, 73, 76, 77, 77, 79, 80, 81, 82, 82, 83, 84, 84, 85, 86, 87, 87, 88, 90, 91, 91, 94, 94, 95, 95, 96, 96, 97, 98, 98, 99, 99
Offset: 1

Views

Author

Albert Lau, Jul 03 2016

Keywords

Comments

4 mutually tangent circles satisfy 2 (a^2 + b^2 + c^2 + d^2) = (a + b + c + d)^2 where a,b,c,d are the curvatures.

Examples

			a,  b,  c, d
12, 4,  1, 1
15, 3,  2, 2
23, 6,  3, 2
24, 12, 1, 1
28, 9,  4, 1
		

Programs

  • Mathematica
    aMax = 100;
    Do[
        If[GCD[a, b, c] > 1, Continue[]];
        d = a + b + c - 2 Sqrt[a b + a c + b c];
        If[d // IntegerQ // Not, Continue[]];
        (*{a,b,c,d}*)a // Sow;
        , {a, aMax}
        , {b, (2 a)/Sqrt[3] - a // Ceiling, (Sqrt[a] - 1)^2}
        , {c,(a-b)^2/(4(a+b))//Ceiling,Min[b,(Sqrt[a]-Sqrt[b])^2-1//Ceiling]}
    ] // Reap // Last // Last(*//TableForm*)
    d =.;