A274616 Maximal number of non-attacking queens on a right triangular board with n cells on each side.
0, 1, 1, 2, 2, 3, 4, 5, 5, 6, 7, 7, 8, 9, 9, 10, 11, 11, 12, 13, 13, 14, 15, 15, 16, 17, 17, 18, 19, 19, 20, 21, 21, 22, 23, 23, 24, 25, 25, 26, 27, 27, 28, 29, 29, 30, 31, 31, 32, 33, 33, 34, 35, 35, 36, 37, 37, 38, 39, 39, 40, 41, 41, 42, 43, 43, 44, 45, 45, 46, 47, 47
Offset: 0
Examples
n=3: OOX XO O n=4: OOOX OXO OO O n=5: OOOOX OOXO XOO OO O
References
- Paul Vanderlind, Richard K. Guy, and Loren C. Larson, The Inquisitive Problem Solver, MAA, 2002. See Problem 252, pages 67, 87, 198 and 276.
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- F. Michel Dekking, Jeffrey Shallit, and N. J. A. Sloane, Queens in exile: non-attacking queens on infinite chess boards, Electronic J. Combin., 27:1 (2020), #P1.52.
- Gabriel Nivasch and Eyal Lev, Nonattacking Queens on a Triangle, Mathematics Magazine, Vol. 78, No. 5 (Dec., 2005), pp. 399-403.
- Index entries for linear recurrences with constant coefficients, signature (1,0,1,-1).
Programs
-
Mathematica
CoefficientList[Series[x*(1 +x^2 -x^3)*(1 +x^4)/((1-x)^2*(1+x+x^2)), {x, 0, 50}], x] (* G. C. Greubel, Jul 03 2016 *)
-
PARI
concat(0, Vec(x*(1+x^2-x^3)*(1+x^4)/((1-x)^2*(1+x+x^2)) + O(x^100))) \\ Colin Barker, Jul 02 2016
Formula
Except for n=4, this is round(2n/3).
From Colin Barker, Jul 02 2016: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4) for n>5.
G.f.: x*(1+x^2-x^3)*(1+x^4)/((1-x)^2*(1+x+x^2)). (End)
a(n) = 2*(3*n + sqrt(3)*sin((2*Pi*n)/3)) / 9. - Colin Barker, Mar 08 2017
Comments