cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A274629 Partial sums of A274628.

Original entry on oeis.org

1, 5, 12, 25, 40, 66, 91, 130, 170, 224, 273, 352, 415, 503, 591, 703, 796, 936, 1045, 1204, 1346, 1516, 1659, 1883, 2051, 2267, 2469, 2724, 2923, 3227, 3446, 3754, 4022, 4338, 4612, 5016, 5297, 5667, 6005, 6443, 6766, 7250, 7595, 8076, 8509, 8993, 9382, 9993
Offset: 1

Views

Author

N. J. A. Sloane, Jul 07 2016

Keywords

Crossrefs

Cf. A274628.

Extensions

More terms from Eric Rowland, May 26 2018

A350596 Coefficients of the expansion of Sum_{i,j,k>=1} x^(i*j*k)/((1-x^i)*(1-x^j)*(1-x^k)).

Original entry on oeis.org

1, 6, 15, 34, 54, 96, 130, 196, 255, 349, 417, 570, 652, 823, 954, 1180, 1299, 1602, 1732, 2089, 2280, 2659, 2820, 3375, 3541, 4078, 4321, 4963, 5139, 5970, 6115, 6982, 7233, 8116, 8325, 9544, 9634, 10780, 11040, 12385, 12465, 14091, 14071, 15730, 15976, 17596, 17580
Offset: 1

Views

Author

Seiichi Manyama, Jan 08 2022

Keywords

Crossrefs

Programs

  • PARI
    my(N=66, x='x+O('x^N)); Vec(sum(i=1, N, sum(j=1, N\i, sum(k=1, N\(i*j), x^(i*j*k)/((1-x^i)*(1-x^j)*(1-x^k))))))
Showing 1-2 of 2 results.