cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A274628 Nathanson's orphan-counting function h(n).

Original entry on oeis.org

1, 4, 7, 13, 15, 26, 25, 39, 40, 54, 49, 79, 63, 88, 88, 112, 93, 140, 109, 159, 142, 170, 143, 224, 168, 216, 202, 255, 199, 304, 219, 308, 268, 316, 274, 404, 281, 370, 338, 438, 323, 484, 345, 481, 433, 484, 389, 611, 422, 566, 492, 607, 459, 684, 508, 692
Offset: 1

Views

Author

N. J. A. Sloane, Jul 07 2016

Keywords

Comments

Number of integer solutions to a*b - c*d = n such that a > c >= 0 and b > d >= 0. - David Radcliffe, Mar 28 2019

Crossrefs

Programs

  • Mathematica
    Table[Total[Function[parts, Count[CountDistinct /@ IntegerPartitions[n, All, parts], 2]] /@ Subsets[Range[n], {2}]] + 2 DivisorSigma[1, n] - DivisorSigma[0, n], {n, 1, 100}] (* Eric Rowland, May 26 2018 *)
  • PARI
    my(N=66, x='x+O('x^N)); Vec(sum(i=1, N, sum(j=1, N\i, x^(i*j)/((1-x^i)*(1-x^j))))) \\ Seiichi Manyama, Jan 08 2022
    
  • Python
    from sympy import divisor_sigma
    def A274628(n): return int(sum(divisor_sigma(j,0)*divisor_sigma(n-j,0) for j in range(1,(n-1>>1)+1)) + ((divisor_sigma(n+1>>1,0)**2 if n-1&1 else 0)-divisor_sigma(n,0)+3*divisor_sigma(n)>>1)) # Chai Wah Wu, Aug 30 2024

Formula

a(n) = A002133(n) + 2*A000203(n) - A000005(n). - David Radcliffe, Mar 28 2019
G.f.: Sum_{i,j>=1} x^(i*j)/((1-x^i)*(1-x^j)). - Seiichi Manyama, Jan 08 2022

Extensions

More terms from Eric Rowland, May 26 2018
Showing 1-1 of 1 results.