A274658 Irregular triangle which lists in row n the divisors of 2*n+1.
1, 1, 3, 1, 5, 1, 7, 1, 3, 9, 1, 11, 1, 13, 1, 3, 5, 15, 1, 17, 1, 19, 1, 3, 7, 21, 1, 23, 1, 5, 25, 1, 3, 9, 27, 1, 29, 1, 31, 1, 3, 11, 33, 1, 5, 7, 35, 1, 37, 1, 3, 13, 39, 1, 41, 1, 43, 1, 3, 5, 9, 15, 45
Offset: 0
Examples
The irregular triangle T(n, k) begins: n, 2n+1\k 1 2 3 4 ... 0, 1: 1 1, 3: 1 3 2, 5: 1 5 3, 7: 1 7 4, 9: 1 3 9 5, 11: 1 11 6, 13: 1 13 7, 15: 1 3 5 15 8, 17: 1 17 9, 19: 1 19 10, 21: 1 3 7 21 11, 23: 1 23 12, 25: 1 5 25 13, 27: 1 3 9 27 14, 29: 1 29 15, 31: 1 31 16, 33: 1 3 11 33 17, 35: 1 5 7 35 18, 37: 1 37 19, 39: 1 3 13 39 20, 41: 1 41 ... The above mentioned second factor in the sn formula has as q^4 coefficient: sin(1*v) + sin(3*v) + sin(9*v).
Links
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972,
Programs
-
Mathematica
Table[Divisors[2 n + 1], {n, 0, 22}] // Flatten (* Michael De Vlieger, Jul 18 2016 *)
-
PARI
row(n) = divisors(2*n+1); \\ Amiram Eldar, May 02 2025
Formula
T(n, k) = k-th divisor of 2*n+1 in increasing order.
Comments