A275790 Triangle T(n, m) appearing in the expansion of the scaled phase space coordinate qhat of the plane pendulum in terms of the Jacobi nome q and sin(v) multiplying even powers of 2*cos(v), with v = u/((2/Pi)*K(k)).
1, 8, 1, -32, 11, 3, -736, -92, 9, 15, 2816, -593, -249, -65, 35, 48976, 6122, 1581, -970, -1295, 315, -951424, 61252, 67791, 46030, 18515, -21735, 3465, -1045952, -130744, -92082, -30445, 14455, 53928, -25179, 3003, 26933248, 1069361, -1666047, -634255, -1167740, -1258236, 1562253, -471471, 45045, 634836808, 79354601, 24881793, 17914550, 30289840, 12635028, -71064609, 42480438, -9594585, 765765
Offset: 0
Examples
The triangle T(n, m) begins: n\m 0 1 2 3 4 5 ... 0: 1 1: 8 1 2: -32 11 3 3: -736 -92 9 15 4: 2816 -593 -249 -65 35 5: 48976 6122 1581 -970 -1295 315 ... row n=6: -951424 61252 67791 46030 18515 -21735 3465, row n=7: -1045952 -130744 -92082 -30445 14455 53928 -25179 3003, row n=8: 26933248 1069361 -1666047 -634255 -1167740 -1258236 1562253 -471471 45045, row n=9: 634836808 79354601 24881793 17914550 30289840 12635028 -71064609 42480438 -9594585 765765. ... The corresponding L(n) = A025547(n+1) numbers are 1, 3, 15, 105, 315, 3465, 45045, 45045, 765765, 14549535,... n=4: the contribution to qhat(v, q) of order q^4 is (q^4/315)*(2816 - 593*(2*cos(v))^2 - 249*(2*cos(v))^4 - 65*(2*cos(v))^6 + 35*(2*cos(v))^8).
Formula
T(n, m)*(2*cos(v))^(2*m)), n >= 0, m = 0, 1, ..., n, gives the contribution to q^n/L(n) (L(n) = A025547(n+1)) in the rescaled phase space coordinate qhat(v, q) expansion of the plane pendulum. See a comment above for details.
Comments