A274671 Diagonal of the rational function 1/(1 - x - y - z - x y + x z + y z - x y z).
1, 5, 49, 593, 7921, 111965, 1641865, 24705665, 378931585, 5898329045, 92893693729, 1477015762865, 23671209428881, 381902943661517, 6196712221450009, 101043805539177473, 1654726991239056385, 27201210101330189477, 448652354194417534609, 7422254208909904273553
Offset: 0
Keywords
Links
- Gheorghe Coserea, Table of n, a(n) for n = 0..310
- A. Bostan, S. Boukraa, J.-M. Maillard, J.-A. Weil, Diagonals of rational functions and selected differential Galois groups, arXiv preprint arXiv:1507.03227 [math-ph], 2015.
- Jacques-Arthur Weil, Supplementary Material for the Paper "Diagonals of rational functions and selected differential Galois groups"
Programs
-
Mathematica
gf = Hypergeometric2F1[1/12, 5/12, 1, 13824*x^5*(1 - 19*x + 27*x^2 + x^3) / (1 - 20*x + 54*x^2 + 28*x^3 + x^4)^3]/(1 - 20*x + 54*x^2 + 28*x^3 + x^4)^(1/4); CoefficientList[gf + O[x]^20, x] (* Jean-François Alcover, Dec 01 2017 *) a[n_] := HypergeometricPFQ[{-n, -n, n + 1}, {1, 1}, 2]; Table[a[n], {n, 0, 19}] (* Peter Luschny, Nov 15 2021 *)
-
PARI
\\ system("wget http://www.jjj.de/pari/hypergeom.gpi"); read("hypergeom.gpi"); N = 20; x = 'x + O('x^N); Vec(hypergeom([1/12, 5/12],[1],13824*x^5*(1-19*x+27*x^2+x^3)/(1-20*x+54*x^2+28*x^3+x^4)^3, N)/(1-20*x+54*x^2+28*x^3+x^4)^(1/4))
-
PARI
diag(expr, N=22, var=variables(expr)) = { my(a = vector(N)); for (k = 1, #var, expr = taylor(expr, var[#var - k + 1], N)); for (n = 1, N, a[n] = expr; for (k = 1, #var, a[n] = polcoeff(a[n], n-1))); return(a); }; diag(1/(1 - x - y - z - x*y + x*z + y*z - x*y*z), 20) \\ test: diag(1/(1 - x - y - z - x*y + x*z + y*z - x*y*z)) == diag(1/(1 + x + y - 2*z - y*z - 2*x*z + x*y*z)) \\ Gheorghe Coserea, Jul 03 2018
Formula
G.f.: hypergeom([1/12, 5/12],[1],13824*x^5*(1-19*x+27*x^2+x^3)/(1-20*x+54*x^2+28*x^3+x^4)^3)/(1-20*x+54*x^2+28*x^3+x^4)^(1/4).
0 = x*(4*x-5)*(x^3+27*x^2-19*x+1)*y'' + (12*x^4+196*x^3-481*x^2+190*x-5)*y' + (4*x^3+18*x^2-95*x+25)*y, where y is the g.f.
a(n) = Sum_{k=0..n} binomial(n,k)^2 * binomial(n+k,k) * 2^k. - Ilya Gutkovskiy, Nov 15 2021
a(n) = hypergeom([-n, -n, n + 1], [1, 1], 2). - Peter Luschny, Nov 15 2021
Recurrence: n^2*(37*n - 62)*a(n) = (703*n^3 - 1881*n^2 + 1383*n - 330)*a(n-1) - (999*n^3 - 3672*n^2 + 4267*n - 1510)*a(n-2) - (n-2)^2*(37*n - 25)*a(n-3). - Vaclav Kotesovec, Nov 15 2021
Comments