A274675 Primes p such that p = x^2 + 14*y^2 or p = 2*x^2 + 7*y^2, where p != 2, 7 and x, y are integers.
23, 71, 79, 113, 127, 137, 151, 191, 193, 233, 239, 263, 281, 337, 359, 401, 431, 449, 457, 463, 487, 569, 599, 617, 631, 641, 673, 743, 751, 809, 823, 863, 911, 919, 953, 967, 977, 991, 1009, 1031, 1033, 1087, 1103, 1129, 1201, 1289, 1297, 1303, 1327
Offset: 1
References
- D. A. Buell, Binary Quadratic Forms. Springer-Verlag, NY, 1989, pp. 51-53.
- David A. Cox, Primes of the Form x^2 + n y^2, John Wiley & Sons, 1st edition, 1989; 2nd edition, 2003.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Thomas R. Hagedorn, Primes of the form x^2+ny^2 and the geometry of (convenient) numbers (page 3).
Programs
-
Magma
[p: p in PrimesUpTo(3000) | p mod 56 in {1, 9, 15, 23, 25, 39} ];
-
Mathematica
Select[Prime@Range[300], MemberQ[{1, 9, 15, 23, 25, 39}, Mod[#, 56]] &]
-
PARI
is(n) = ispseudoprime(n) && #setintersect([n % 56], [1, 9, 15, 23, 25, 39])==1 \\ Felix Fröhlich, Jul 02 2016
Comments