A274694 Variation on Fermat's Diophantine m-tuple: 1 + the product of any two distinct terms is a prime power.
1, 2, 3, 4, 6, 12, 211050, 3848880, 20333040, 125038830, 2978699430
Offset: 1
Examples
After a(1)=1, a(2)=2, a(3)=3, we want m, the smallest number > 3 such that m+1, 2m+1 and 3m+1 are all prime powers: this is m = 4 = a(4).
Programs
-
Sage
seq = [1] prev_element = 1 max_n = 8 for n in range(2, max_n+1): next_element = prev_element + 1 while True: all_match = True for element in seq: x = element * next_element + 1 if not x.is_prime_power(): all_match = False break if all_match: seq.append( next_element ) break next_element += 1 prev_element = next_element print(seq)
Comments