A274696 Variation on Fermat's Diophantine m-tuple: 1 + the LCM of any two distinct terms is a square.
0, 1, 3, 8, 15, 24, 120, 168, 840, 1680, 5040, 201600, 256032000
Offset: 1
Keywords
Examples
After a(1)=0, a(2)=1, a(3)=3, we want m, the smallest number > 3 such that lcm(0,m)+1, lcm(2,m)+1 and lcm(3,m)+1 are squares: this is m = 8 = a(4).
Crossrefs
Cf. A030063.
Programs
-
Mathematica
a = {0}; Do[AppendTo[a, SelectFirst[Range[Max@ a + 1, 3*10^5], Function[k, Times @@ Boole@ Map[IntegerQ@ Sqrt[LCM[a[[#]], k] + 1] &, Range[n - 1]] == 1]]], {n, 2, 12}]; a (* Michael De Vlieger, Jul 05 2016, Version 10 *)
-
Sage
seq = [0] prev_element = 0 max_n = 13 for n in range(2, max_n+1): next_element = prev_element + 1 while True: all_match = True for element in seq: x = lcm( element, next_element ) + 1 if not is_square(x): all_match = False break if all_match: seq.append( next_element ) print(seq) break next_element += 1 prev_element = next_element print(seq)
Comments