A274697 Variation on Fermat's Diophantine m-tuple: 1 + the GCD of any two distinct terms is a square.
0, 3, 15, 24, 48, 63, 120, 195, 255, 528, 960, 3024, 3363, 3480, 3720, 3843, 4095, 4623, 5475, 12099, 16383, 19599, 24963, 37635, 38415, 44943, 56643, 62499, 65535, 69168, 71823, 85263, 94863, 114243, 168099
Offset: 1
Keywords
Examples
After a(1)=0, a(2)=3, a(3)=15, we want m, the smallest number > 15 such that GCD(0,m)+1, GCD(3,m)+1 and GCD(15,m)+1 are squares: this is m = 24 = a(4).
Crossrefs
Cf. A030063.
Programs
-
Sage
seq = [] prev_element = 0 seq.append( prev_element ) max_n = 35 for n in range(2, max_n+1): next_element = prev_element + 1 while True: all_match = True for element in seq: x = gcd( element, next_element ) + 1 if not ( is_square(x) ): all_match = False break if all_match: seq.append( next_element ) print(seq) break next_element = next_element + 1 prev_element = next_element print(seq)
Comments