cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A274734 G.f. satisfies A(x) = (1 + x*A(x))^2 * (1 + x*A(x)^2).

Original entry on oeis.org

1, 3, 15, 94, 661, 4983, 39363, 321587, 2694860, 23035341, 200068651, 1760558682, 15663027711, 140648129383, 1273083938979, 11603500739475, 106404140837773, 980977232554344, 9087285865886766, 84541177049414342, 789545725457924023, 7399515198155161271, 69568021610270590583, 655960254857760518109, 6201585037793334756198, 58775103307105512895151
Offset: 0

Views

Author

Paul D. Hanna, Aug 02 2016

Keywords

Comments

More generally, if G(x) satisfies
G(x) = (1 + a*x*G(x))^m * (1 + b*x*G(x)^2), then
G(x) = (1/x) * Series_Reversion( x * (1 - b*x*(1 + a*x)^m) / (1 + a*x)^m ).

Examples

			G.f.: A(x) = 1 + 3*x + 15*x^2 + 94*x^3 + 661*x^4 + 4983*x^5 + 39363*x^6 + 321587*x^7 +...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=1); for(i=1,n, A = (1 + x*A)^2 * (1 + x*A^2) + x*O(x^n) ); polcoeff(A,n)}
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    {a(n) = my(A=1); A = (1/x)*serreverse(x*(1-x*(1+x)^2)/(1+x +x^2*O(x^n) )^2 ); polcoeff(A,n)}
    for(n=0,30,print1(a(n),", "))

Formula

G.f.: (1/x) * Series_Reversion( x * (1 - x*(1+x)^2) / (1+x)^2 ).
Recurrence: 31*(n-1)*n*(n+1)*(5974*n^3 - 40359*n^2 + 90115*n - 67124)*a(n) = 2*(n-1)*n*(1003632*n^4 - 7282128*n^3 + 18518502*n^2 - 18822839*n + 5649607)*a(n-1) - 2*(n-1)*(740776*n^5 - 6486068*n^4 + 21715762*n^3 - 34616651*n^2 + 26123385*n - 7413210)*a(n-2) + 2*(2*n - 5)*(65714*n^5 - 575377*n^4 + 1957337*n^3 - 3264653*n^2 + 2726129*n - 941430)*a(n-3) + 4*(n-3)*(2*n - 7)*(2*n - 5)*(5974*n^3 - 22437*n^2 + 27319*n - 11394)*a(n-4). - Vaclav Kotesovec, Nov 18 2017
a(n) ~ sqrt((s*(1+r*s)*(2 + s + 3*r*s^2)) / (1 + r*(1 + 6*s*(1+r*s)))) / (2*sqrt(Pi) * n^(3/2) * r^n), where r = 0.099424837262345547872398211374352678... and s = 2.183663565361369673488934371066403742... are roots of the system of equations (1 + r*s)^2*(1 + r*s^2) = s, 2*r*(1 + s + 2*r^2*s^3 + r*s*(1 + 3*s)) = 1. - Vaclav Kotesovec, Nov 18 2017
a(n) = (1/(n+1)) * Sum_{k=0..n} binomial(n+k,k) * binomial(2*n+2*k+2,n-k). - Seiichi Manyama, Jan 27 2024