A274769 Square analog to Keith numbers.
1, 9, 37, 40, 43, 62, 70, 74, 160, 1264, 1952, 2847, 12799, 16368, 16584, 42696, 83793, 97415, 182011, 352401, 889871, 925356, 1868971, 1881643, 3661621, 7645852, 15033350, 21655382, 63288912, 88192007, 158924174, 381693521, 792090500, 2025078249, 2539401141
Offset: 1
Examples
1264^2 = 1597696 : 1 + 5 + 9 + 7 + 6 + 9 + 6 = 43; 5 + 9 + 7 + 6 + 9 + 6 + 43 = 85; 9 + 7 + 6 + 9 + 6 + 43 + 85 = 165; 7 + 6 + 9 + 6 + 43 + 85 + 165 = 321; 6 + 9 + 6 + 43 + 85 + 165 + 321 = 635; 9 + 6 + 43 + 85 + 165 + 321 + 635 = 1264.
Programs
-
Maple
with(numtheory): P:=proc(q, h) local a,b,k,n,t,v; v:=array(1..h); for n from 1 to q do b:=n^2; a:=[]; for k from 1 to ilog10(b)+1 do a:=[(b mod 10),op(a)]; b:=trunc(b/10); od; for k from 1 to nops(a) do v[k]:=a[k]; od; b:=ilog10(n^2)+1; t:=nops(a)+1; v[t]:=add(v[k], k=1..b); while v[t]
-
Mathematica
Select[Range[10^6], Function[n, Module[{d = IntegerDigits[n^2], s, k = 0}, s = Total@ d; While[s < n, AppendTo[d, s]; k++; s = 2 s - d[[k]]]; s == n]]] (* Michael De Vlieger, Feb 22 2017, after T. D. Noe at A007629 *) (* function keithQ[ ] is defined in A007629 *) a274769[n_] := Join[{1, 9}, Select[Range[10, n], keithQ[#, 2]&]] a274769[10^6] (* Hartmut F. W. Hoft, Jun 02 2021 *)
Extensions
a(32)-a(35) from Giovanni Resta, Jul 08 2016
Comments