cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A274769 Square analog to Keith numbers.

Original entry on oeis.org

1, 9, 37, 40, 43, 62, 70, 74, 160, 1264, 1952, 2847, 12799, 16368, 16584, 42696, 83793, 97415, 182011, 352401, 889871, 925356, 1868971, 1881643, 3661621, 7645852, 15033350, 21655382, 63288912, 88192007, 158924174, 381693521, 792090500, 2025078249, 2539401141
Offset: 1

Views

Author

Paolo P. Lava, Jul 06 2016

Keywords

Comments

Like Keith numbers but starting from n^2 digits to reach n.
Consider the digits of the square of a number n. Take their sum and repeat the process deleting the first addend and adding the previous sum. The sequence lists the numbers that after some iterations reach a sum equal to themselves.

Examples

			1264^2 = 1597696 :
1 + 5 + 9 + 7 + 6 + 9 + 6 = 43;
5 + 9 + 7 + 6 + 9 + 6 + 43 = 85;
9 + 7 + 6 + 9 + 6 + 43 + 85 = 165;
7 + 6 + 9 + 6 + 43 + 85 + 165 = 321;
6 + 9 + 6 + 43 + 85 + 165 + 321 = 635;
9 + 6 + 43 + 85 + 165 + 321 + 635 = 1264.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q, h) local a,b,k,n,t,v; v:=array(1..h);
    for n from 1 to q do b:=n^2; a:=[];
    for k from 1 to ilog10(b)+1 do a:=[(b mod 10),op(a)]; b:=trunc(b/10); od;
    for k from 1 to nops(a) do v[k]:=a[k]; od; b:=ilog10(n^2)+1;
    t:=nops(a)+1; v[t]:=add(v[k], k=1..b); while v[t]
    				
  • Mathematica
    Select[Range[10^6], Function[n, Module[{d = IntegerDigits[n^2], s, k = 0}, s = Total@ d; While[s < n, AppendTo[d, s]; k++; s = 2 s - d[[k]]]; s == n]]] (* Michael De Vlieger, Feb 22 2017, after T. D. Noe at A007629 *)
    (* function keithQ[ ] is defined in A007629 *)
    a274769[n_] := Join[{1, 9}, Select[Range[10, n], keithQ[#, 2]&]]
    a274769[10^6] (* Hartmut F. W. Hoft, Jun 02 2021 *)

Extensions

a(32)-a(35) from Giovanni Resta, Jul 08 2016