A274772 Zero together with the partial sums of A056640.
0, 1, 6, 24, 66, 149, 292, 520, 860, 1345, 2010, 2896, 4046, 5509, 7336, 9584, 12312, 15585, 19470, 24040, 29370, 35541, 42636, 50744, 59956, 70369, 82082, 95200, 109830, 126085, 144080, 163936, 185776, 209729, 235926, 264504, 295602, 329365, 365940, 405480, 448140, 494081, 543466, 596464, 653246, 713989, 778872, 848080, 921800, 1000225, 1083550
Offset: 0
Examples
a(0) = 0, a(1) = 1, a(2) = 6, a(3) = 24, a(4) = 66.
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-5,0,5,-4,1).
Programs
-
Mathematica
LinearRecurrence[{4,-5,0,5,-4,1},{0,1,6,24,66,149},60] (* Harvey P. Dale, Jun 19 2021 *)
-
PARI
concat(0, Vec(x*(1 + 2*x + 5*x^2) / ((1 - x)^5 * (1 + x)) + O(x^50))) \\ Colin Barker, Nov 11 2016
Formula
a(n) = (4*n^4+8*n^3+2*n^2+4*n+3*(1-(-1)^n))/24. Therefore :
a(2*k) = k*(k+1)*(8*k^2+1)/3, a(2*k+1) = (k+1)*(8*k^3+16*k^2+9*k+3)/3.
From Colin Barker, Nov 11 2016: (Start)
G.f.: x*(1 + 2*x + 5*x^2) / ((1 - x)^5 * (1 + x)).
a(n) = 4*a(n-1) - 5*a(n-2) + 5*a(n-4) - 4*a(n-5) + a(n-6) for n>5.
(End)
Comments