cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A274868 Number of set partitions of [n] into exactly four blocks such that all odd elements are in blocks with an odd index and all even elements are in blocks with an even index.

Original entry on oeis.org

1, 2, 7, 14, 35, 70, 155, 310, 651, 1302, 2667, 5334, 10795, 21590, 43435, 86870, 174251, 348502, 698027, 1396054, 2794155, 5588310, 11180715, 22361430, 44731051, 89462102, 178940587, 357881174, 715795115, 1431590230, 2863245995, 5726491990, 11453115051
Offset: 4

Views

Author

Alois P. Heinz, Jul 09 2016

Keywords

Examples

			a(6) = 7: 13|24|5|6, 15|24|3|6, 1|24|35|6, 15|26|3|4, 15|2|3|46, 1|26|35|4, 1|2|35|46.
a(7) = 14: 137|24|5|6, 13|24|57|6, 157|24|3|6, 15|24|37|6, 17|24|35|6, 1|24|357|6, 157|26|3|4, 15|26|37|4, 157|2|3|46, 15|2|37|46, 17|26|35|4, 1|26|357|4, 17|2|35|46, 1|2|357|46.
		

Crossrefs

Column k=4 of A274537.

Programs

  • Mathematica
    Drop[CoefficientList[Series[-x^4/((x - 1) (2 x - 1) (x + 1) (2 x^2 - 1)), {x, 0, 36}], x], 4] (* Michael De Vlieger, Jun 15 2021 *)

Formula

G.f.: -x^4/((x-1)*(2*x-1)*(x+1)*(2*x^2-1)).
From Ridouane Oudra, Jul 13 2023: (Start)
a(n) = x/6 + ((-1)^n - 1)*y, where x = 2^n - 3*sqrt(2)^n + 2 and y = (1/2)*sqrt(2)^(n-1) - (1/4)*sqrt(2)^n - 1/6.
a(n) = ((3 - (-1)^n)/12)*(4^floor(n/2) - 3*2^floor(n/2) + 2).
a(2n) = (4^n)/6 - 2^(n-1) + 1/3.
a(2n+1) = 2*a(2n). (End)