cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A274933 Maximal number of non-attacking queens on a quarter chessboard containing n^2 squares.

Original entry on oeis.org

1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 57, 58, 59, 60, 61, 62
Offset: 1

Views

Author

N. J. A. Sloane, Jul 13 2016

Keywords

Comments

Take the quarter-board formed from a 2n-1 X 2n-1 chessboard by joining the center square to the top two corners. There are n^2 squares. If n = 11, 2n-1 = 21 and the board looks like this, with 11^2 = 121 squares (the top row is the top of the chessboard, the single cell at the bottom is at the center of the board):
OOOOOOOOOOOOOOOOOOOOO
-OOOOOOOOOOOOOOOOOOO-
--OOOOOOOOOOOOOOOOO--
---OOOOOOOOOOOOOOO---
----OOOOOOOOOOOOO----
-----OOOOOOOOOOO-----
------OOOOOOOOO------
-------OOOOOOO-------
--------OOOOO--------
---------OOO---------
----------O----------
The main question is, how does a(n) behave when n is large? (See A287866.)
This is a bisection of A287864. - Rob Pratt, Jun 04 2017

Examples

			For n=6 the maximal number is 5:
OOXOOOOOOOO
-OOOOOOXOO-
--OXOOOOO--
---OOOXO---
----OOO----
-----X-----
Examples from _Rob Pratt_, Jul 13 2016:
(i) For n=15 the maximal number is 13:
OOOOOOXOOOOOOOOOOOOOOOOOOOOOO
-OOOOOOOOOOOOOOOOOOXOOOOOOOO-
--OOOOOXOOOOOOOOOOOOOOOOOOO--
---OOOOOOOOOOOOOOOXOOOOOOO---
----OOOOOOOOOOOXOOOOOOOOO----
-----OOOOOOOXOOOOOOOOOOO-----
------OOOXOOOOOOOOOOOOO------
-------OOOOOOOOOXOOOOO-------
--------OOXOOOOOOOOOO--------
---------OOOOOOOOXOO---------
----------OOOOXOOOO----------
-----------XOOOOOO-----------
------------OXOOO------------
-------------OOO-------------
--------------O--------------
(ii) For n=31 the maximal number is 28:
OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOXOOOOOOOOOOOOOOOOO
-OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOXOOOOOOOOOOOOOOOOOO-
--OOOOOOOOOOOOOOXOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO--
---OOOOOOOOOOOOOOOXOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO---
----OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOXOOOOOOOOOOOOOO----
-----OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOXOOOOOOOOOOOOOOO-----
------OOOOOOOOOOOXOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO------
-------OOOOOOOOOOOOXOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO-------
--------OOOOOOOOOOOOOOOOOOOOXOOOOOOOOOOOOOOOOOOOOOOOO--------
---------OOOOOOOOOOOOOOOOOOOOOOOOOOOOOXOOOOOOOOOOOOO---------
----------OOOOOOOOOOOOOOOOOXOOOOOOOOOOOOOOOOOOOOOOO----------
-----------OOOOOOOOOOOOOOOOOOOOOOOOOOXOOOOOOOOOOOO-----------
------------OOOOOOOOOOOOOOOOOOOOOOOOOOOXOOOOOOOOO------------
-------------OOOOOOOOOOOOOOOOOOXOOOOOOOOOOOOOOOO-------------
--------------OOOOOOOOOOXOOOOOOOOOOOOOOOOOOOOOO--------------
---------------OOOOOXOOOOOOOOOOOOOOOOOOOOOOOOO---------------
----------------OOOOOOOXOOOOOOOOOOOOOOOOOOOOO----------------
-----------------OOOOOOOOOOOOOOOOOOOXOOOOOOO-----------------
------------------OOOOXOOOOOOOOOOOOOOOOOOOO------------------
-------------------OOOOOOOOOOOOOOOOXOOOOOO-------------------
--------------------OXOOOOOOOOOOOOOOOOOOO--------------------
---------------------OOOOOOOOOOOOOXOOOOO---------------------
----------------------OOOOOOOOXOOOOOOOO----------------------
-----------------------OOOXOOOOOOOOOOO-----------------------
------------------------OOOOOOOOOXOOO------------------------
-------------------------XOOOOOOOOOO-------------------------
--------------------------OOOOOOXOO--------------------------
---------------------------OOXOOOO---------------------------
----------------------------OOOOO----------------------------
-----------------------------OOO-----------------------------
------------------------------O------------------------------
		

Crossrefs

Formula

Since there can be at most one queen per row, a(n) <= n. In fact, since there cannot be a queen on both rows 1 and 2, a(n) <= n-1 for n>1. - N. J. A. Sloane, Jun 04 2017

Extensions

Terms a(n) with n >= 15 corrected and extended by Rob Pratt, Jul 13 2016
a(46)-a(67) from Andy Huchala, Mar 27 2024