A274938 Number of unlabeled forests with n nodes that have two components, neither of which is the empty graph.
0, 0, 0, 1, 1, 3, 5, 11, 21, 46, 96, 216, 482, 1121, 2633, 6334, 15414, 38132, 95321, 241029, 614862, 1582030, 4099922, 10697038, 28074752, 74086468, 196469601, 523383136, 1400048426, 3759508536, 10131089877, 27391132238, 74283533023, 202030012554, 550934011491, 1506161266348
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Crossrefs
Programs
-
Maple
with(numtheory): b:= proc(n) option remember; `if`(n<2, n, (add(add(d* b(d), d=divisors(j))*b(n-j), j=1..n-1))/(n-1)) end: g:= proc(n) option remember; `if`(n=0, 1, b(n)-add(b(j)* b(n-j), j=0..n/2)+`if`(n::odd, 0, (t->t*(t+1)/2)(b(n/2)))) end: a:= proc(n) option remember; add(g(j)*g(n-j), j=1..n/2)- `if`(n::odd or n=0, 0, (t-> t*(t+1)/2)(g(n/2))) end: seq(a(n), n=0..40); # Alois P. Heinz, Jul 20 2016
-
Mathematica
b[n_] := b[n] = If[n<2, n, Sum[DivisorSum[j, #*b[#]&]*b[n-j], {j, 1, n-1}]/(n-1)]; g[n_] := g[n] = If[n==0, 1, b[n]-Sum[b[j]*b[n-j], {j, 0, n/2}]+If[OddQ[n], 0, Function[t, t*(t+1)/2][b[n/2]]]]; a[n_] := a[n] = Sum[g[j]*g[n-j], {j, 1, n/2}]-If[OddQ[n] || n==0, 0, Function[t, t*(t+1)/2][g[n/2]]]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Mar 15 2017, after Alois P. Heinz *)
Formula
G.f.: [A(x)^2 - A(x^2)]/2 where A(x) is the o.g.f. for A000055 without the initial constant 1.