cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A275751 Self-convolution square root of the even bisection of A274965.

Original entry on oeis.org

1, 1, 4, 19, 92, 446, 2150, 10280, 48761, 229558, 1073278, 4986624, 23037102, 105877968, 484337300, 2206188412, 10010589904, 45264063504, 204016241794, 916898737038, 4109984712933, 18379240912034, 82012499946246, 365245641944278, 1623757696702586, 7207073607368924, 31941896126213722, 141377838141158888, 624983649220555836, 2759711619634526196, 12173102200970091434
Offset: 0

Views

Author

Paul D. Hanna, Aug 14 2016

Keywords

Comments

The g.f. of A274965 equals G(x,1), where G(x,y) = x*y + G(x,x*y)^2 is the g.f. of A275670.
First negative term is at a(646).

Examples

			G.f.: A(x) = 1 + x + 4*x^2 + 19*x^3 + 92*x^4 + 446*x^5 + 2150*x^6 + 10280*x^7 + 48761*x^8 + 229558*x^9 + 1073278*x^10 + 4986624*x^11 + 23037102*x^12 +...
where
A(x)^2 = 1 + 2*x + 9*x^2 + 46*x^3 + 238*x^4 + 1228*x^5 + 6289*x^6 + 31924*x^7 + 160694*x^8 + 802642*x^9 + 3980916*x^10 +...+ A274965(2*n)*x^n +...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A,B=1); for(k=0, 2*n, B = B^2 + x^(2*n+1-k) +O(x^(2*n+1))); A = sqrt( (B + subst(B,x,-x))/2 ); polcoeff(A, 2*n)}
    for(n=0, 30, print1(a(n), ", "))

A275752 Self-convolution square root of the odd bisection of A274965.

Original entry on oeis.org

1, 2, 8, 36, 166, 770, 3574, 16560, 76516, 352498, 1619014, 7414134, 33855996, 154181234, 700333366, 3173299648, 14345094004, 64704125888, 291235313046, 1308229210186, 5865335253474, 26248821086374, 117265700856282, 523010482541564, 2328947839518852, 10354971182171076, 45973304229373220, 203824525466826232, 902455230607927616, 3990584636812405052, 17624255201680536016
Offset: 0

Views

Author

Paul D. Hanna, Aug 14 2016

Keywords

Comments

The g.f. of A274965 equals G(x,1), where G(x,y) = x*y + G(x,x*y)^2 is the g.f. of A275670.

Examples

			G.f.: A(x) = 1 + 2*x + 8*x^2 + 36*x^3 + 166*x^4 + 770*x^5 + 3574*x^6 + 16560*x^7 + 76516*x^8 + 352498*x^9 + 1619014*x^10 + 7414134*x^11 + 33855996*x^12 +...
where
A(x)^2 = 1 + 4*x + 20*x^2 + 104*x^3 + 540*x^4 + 2780*x^5 + 14180*x^6 + 71688*x^7 + 359452*x^8 + 1788988*x^9 + 8844064*x^10 +...+ A274965(2*n+1)*x^n +...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A,B=1); for(k=0, 2*n, B = B^2 + x^(2*n+1-k) +O(x^(2*n+2))); A = sqrt( (B - subst(B,x,-x))/(2*x) ); polcoeff(A, 2*n)}
    for(n=0, 30, print1(a(n), ", "))

A275670 G.f. A(x,y) satisfies: A(x,y) = x*y + A(x,x*y)^2, with A(0,y) = 1.

Original entry on oeis.org

1, 0, 1, 0, 2, 0, 4, 0, 8, 1, 0, 16, 4, 0, 32, 14, 0, 64, 40, 0, 128, 108, 2, 0, 256, 272, 12, 0, 512, 664, 52, 0, 1024, 1568, 188, 0, 2048, 3632, 608, 1, 0, 4096, 8256, 1816, 12, 0, 8192, 18528, 5128, 76, 0, 16384, 41088, 13856, 360, 0, 32768, 90304, 36176, 1446, 0, 65536, 196864, 91856, 5192, 4, 0, 131072, 426368, 227968, 17192, 42, 0, 262144, 918016, 555040, 53504, 284, 0, 524288, 1966848, 1329696, 158588, 1496, 0, 1048576, 4195328, 3141632, 451824, 6704, 0, 2097152, 8914432, 7334208, 1245936, 26772, 6
Offset: 0

Views

Author

Paul D. Hanna, Aug 04 2016

Keywords

Comments

Compare g.f. to G(x,y) = x*y + G(x*y,y)^2 with G(0,y) = 0, which generates triangle A138157.
Apparently, the g.f. of column n equals y^n*x^A033156(n) * P(n,x)/Q(n,x), where:
Q(n,x) = Product_{k=1..n} (1 - 2*x^k)^floor(n/k),
and P(n,x) is of degree A024916(n) - A033156(n).

Examples

			G.f.: A(x,y) = 1 + y*x + 2*y*x^2 + 4*y*x^3 + (y^2 + 8*y)*x^4 + (4*y^2 + 16*y)*x^5 + (14*y^2 + 32*y)*x^6 + (40*y^2 + 64*y)*x^7 + (2*y^3 + 108*y^2 + 128*y)*x^8 + (12*y^3 + 272*y^2 + 256*y)*x^9 + (52*y^3 + 664*y^2 + 512*y)*x^10 + (188*y^3 + 1568*y^2 + 1024*y)*x^11 + (y^4 + 608*y^3 + 3632*y^2 + 2048*y)*x^12 +...
such that A(x,y) = x*y + A(x,x*y)^2, with A(0,y) = 1; further,
A(x,y) = x*y + ( x^2*y + A(x,x^2*y)^2 )^2,
A(x,y) = x*y + ( x^2*y + ( x^3*y + A(x,x^3*y)^2 )^2 )^2, etc.
This table of coefficients in g.f. A(x,y) begins:
1;
0, 1;
0, 2;
0, 4;
0, 8, 1;
0, 16, 4;
0, 32, 14;
0, 64, 40;
0, 128, 108, 2;
0, 256, 272, 12;
0, 512, 664, 52;
0, 1024, 1568, 188;
0, 2048, 3632, 608, 1;
0, 4096, 8256, 1816, 12;
0, 8192, 18528, 5128, 76;
0, 16384, 41088, 13856, 360;
0, 32768, 90304, 36176, 1446;
0, 65536, 196864, 91856, 5192, 4;
0, 131072, 426368, 227968, 17192, 42;
0, 262144, 918016, 555040, 53504, 284;
0, 524288, 1966848, 1329696, 158588, 1496;
0, 1048576, 4195328, 3141632, 451824, 6704;
0, 2097152, 8914432, 7334208, 1245936, 26772, 6;
0, 4194304, 18876416, 16943680, 3342784, 98060, 80;
0, 8388608, 39848960, 38785536, 8761720, 335704, 636;
0, 16777216, 83890176, 88063616, 22508448, 1088496, 3844;
0, 33554432, 176166912, 198506624, 56822624, 3375096, 19492;
0, 67108864, 369106944, 444562432, 141270272, 10080760, 87184, 4;
0, 134217728, 771764224, 989807872, 346507120, 29167000, 354628, 80;
0, 268435456, 1610629120, 2192154880, 839762496, 82113648, 1338376, 812;
0, 536870912, 3355467776, 4831741952, 2013427136, 225746384, 4753320, 5916;
0, 1073741824, 6979354624, 10603063808, 4781027584, 607828752, 16052296, 35000;
0, 2147483648, 14495563776, 23174734336, 11254280416, 1606760304, 51954808, 178904, 1; ...
Row polynomials begin:
n=0: 1;
n=1: y;
n=2: 2*y;
n=3: 4*y;
n=4: 8*y + y^2;
n=5: 16*y + 4*y^2;
n=6: 32*y + 14*y^2;
n=7: 64*y + 40*y^2;
n=8: 128*y + 108*y^2 + 2*y^3;
n=9: 256*y + 272*y^2 + 12*y^3;
n=10: 512*y + 664*y^2 + 52*y^3;
n=11: 1024*y + 1568*y^2 + 188*y^3;
n=12: 2048*y + 3632*y^2 + 608*y^3 + y^4;
n=13: 4096*y + 8256*y^2 + 1816*y^3 + 12*y^4;
n=14: 8192*y + 18528*y^2 + 5128*y^3 + 76*y^4;
n=15: 16384*y + 41088*y^2 + 13856*y^3 + 360*y^4;
n=16: 32768*y + 90304*y^2 + 36176*y^3 + 1446*y^4;
n=17: 65536*y + 196864*y^2 + 91856*y^3 + 5192*y^4 + 4*y^5; ...
the first row in which y^m appears is given by n = A033156(m), where A033156 begins:
[1, 4, 8, 12, 17, 22, 27, 32, 38, 44, 50, 56, 62, 68, 74, 80, 87, 94, 101, 108, 115, 122, 129, 136, 143, 150, 157, 164, 171, 178, 185, 192, 200, ...].
Generating functions of initial columns.
G.f. of column 0: 1
G.f. of column 1: y*x/(1-2*x).
G.f. of column 2: y^2*x^4/((1-2*x)^2*(1-2*x^2)).
G.f. of column 3: y^3*2*x^8/((1-2*x)^3*(1-2*x^2)*(1-2*x^3)).
G.f. of column 4: y^4*x^12*(1 + 4*x - 10*x^3)/((1-2*x)^4*(1-2*x^2)^2*(1-2*x^3)*(1-2*x^4)).
G.f. of column 5: y^5*x^17*(4 + 2*x + 8*x^2 - 28*x^4)/((1-2*x)^5*(1-2*x^2)^2*(1-2*x^3)*(1-2*x^4)*(1-2*x^5)).
G.f. of column 6: y^6*x^22*(6 + 8*x - 20*x^3 - 24*x^4 - 36*x^5 - 56*x^6 + 16*x^7 + 176*x^8 + 224*x^9 - 336*x^11)/((1-2*x)^6*(1-2*x^2)^3*(1-2*x^3)^2*(1-2*x^4)*(1-2*x^5)*(1-2*x^6)).
G.f. of column 7: y^7*x^27*(4 + 24*x + 4*x^2 - 12*x^3 - 72*x^5 - 112*x^6 - 96*x^7 + 112*x^8 - 64*x^9 + 64*x^10 + 496*x^11 + 576*x^12 - 1056*x^14) / ((1-2*x)^7*(1-2*x^2)^3*(1-2*x^3)^2*(1-2*x^4)*(1-2*x^5)*(1-2*x^6)*(1-2*x^7)).
G.f. of column 8: y^8*x^32*(1 + 24*x + 36*x^2 - 4*x^3 - 88*x^4 - 202*x^5 - 14*x^6 - 82*x^7 - 168*x^8 + 400*x^9 + 440*x^10 + 892*x^11 + 1292*x^12 - 660*x^13 - 800*x^14 - 688*x^15 - 1776*x^16 - 1136*x^17 - 4504*x^18 - 2672*x^19 + 4672*x^20 + 5664*x^21 + 12672*x^22 - 13728*x^24) / ((1-2*x)^8*(1-2*x^2)^4*(1-2*x^3)^2*(1-2*x^4)^2*(1-2*x^5)*(1-2*x^6)*(1-2*x^7)*(1-2*x^8)).
G.f. of column 9: y^9*x^38*(8 + 60*x + 72*x^2 + 16*x^3 - 238*x^4 - 584*x^5 - 232*x^6 + 172*x^7 + 328*x^8 + 52*x^9 + 1012*x^10 + 2636*x^11 + 1464*x^12 + 520*x^13 - 2040*x^14 - 664*x^15 - 2360*x^16 - 8712*x^17 - 13008*x^18 - 3696*x^19 + 12080*x^20 + 15392*x^21 + 1456*x^22 - 11040*x^23 + 18112*x^24 + 37728*x^25 + 47040*x^26 - 34304*x^27 - 78144*x^28 - 73216*x^29 + 91520*x^31) / ((1-2*x)^9*(1-2*x^2)^4*(1-2*x^3)^3*(1-2*x^4)^2*(1-2*x^5)*(1-2*x^6)*(1-2*x^7)*(1-2*x^8)*(1-2*x^9)).
G.f. of column 10: y^10*x^44*(28 + 96*x + 198*x^2 - 160*x^3 - 864*x^4 - 596*x^5 - 856*x^6 - 384*x^7 + 3652*x^8 + 4752*x^9 + 696*x^10 - 2972*x^11 + 3928*x^12 + 4848*x^13 - 8360*x^14 - 18768*x^15 - 11000*x^16 - 14184*x^17 - 9896*x^18 + 17184*x^19 + 23664*x^20 + 7904*x^21 + 34480*x^22 + 53472*x^23 + 54160*x^24 + 68160*x^25 + 10560*x^26 - 166208*x^27 - 203488*x^28 - 86720*x^29 - 23552*x^30 + 13632*x^31 + 67584*x^32 - 95232*x^33 - 232256*x^34 + 129536*x^35 + 677632*x^36 + 624000*x^37 + 355840*x^38 - 67584*x^39 - 988416*x^40 - 1464320*x^41 + 1244672*x^43) / ((1-2*x)^10*(1-2*x^2)^5*(1-2*x^3)^3*(1-2*x^4)^2*(1-2*x^5)^2*(1-2*x^6)*(1-2*x^7)*(1-2*x^8)*(1-2*x^9)*(1-2*x^10)).
...
The g.f. of column n, y^n * x^A033156(n) * P(n,x)/Q(n,x), appears to have the following denominator:
Q(n,x) = Product_{k=1..n} (1 - 2*x^k)^floor(n/k), with
P(n,x) being a polynomial of degree A024916(n) - A033156(n),
where A024916(n) = Sum_{k=1..n} k*floor(n/k).
...
		

Crossrefs

Cf. A274965 (row sums), A275691 (antidiagonal sums), A033156.
Cf. variant: A138157.

Programs

  • PARI
    /* Print first N rows of this triangle: */ N=32;
    {a(n) = my(A=1 +x*O(x^n)); for(k=0, n, A = A^2 + y*x^(n+1-k)); polcoeff(A, n)}
    {for(n=0, N, for(k=0,n, if(k==0,print1(polcoeff(a(n)+y*O(y^n),k,y)", "), if(polcoeff(a(n)+y*O(y^n),k,y)==0,break,print1(polcoeff(a(n)+y*O(y^n),k,y),", "))));print(""))}

Formula

G.f. A(x,y) satisfies: 1 = ...(((((A(x,y) - x*y)^(1/2) - x^2*y)^(1/2) - x^3*y)^(1/2) - x^4*y)^(1/2) - x^5*y)^(1/2) -...- x^n*y)^(1/2) -..., an infinite series of nested square roots.

A275691 G.f. A(x) satisfies: 1 = ...(((((A(x) - x^2)^(1/2) - x^3)^(1/2) - x^4)^(1/2) - x^5)^(1/2) - x^6)^(1/2) -...- x^n)^(1/2) -..., an infinite series of nested square roots.

Original entry on oeis.org

1, 0, 1, 2, 4, 8, 17, 36, 78, 168, 364, 786, 1700, 3668, 7916, 17056, 36729, 78996, 169772, 364472, 781814, 1675464, 3587660, 7675722, 16409240, 35052552, 74822496, 159599700, 340199178, 724675528, 1542673868, 3281957116, 6977971852, 14827596904, 31489490296, 66837617960, 141789447876, 300636048724, 637116434912, 1349532001896, 2857195771769, 6046370298448
Offset: 0

Views

Author

Paul D. Hanna, Aug 05 2016

Keywords

Comments

Compare definition with that of A274965.

Examples

			G.f.: A(x) = 1 + x^2 + 2*x^3 + 4*x^4 + 8*x^5 + 17*x^6 + 36*x^7 + 78*x^8 + 168*x^9 + 364*x^10 + 786*x^11 + 1700*x^12 + 3668*x^13 + 7916*x^14 +...
The g.f. of related sequence A274965 begins:
A(x)^2 + x = 1 + x + 2*x^2 + 4*x^3 + 9*x^4 + 20*x^5 + 46*x^6 + 104*x^7 + 238*x^8 + 540*x^9 + 1228*x^10 + 2780*x^11 + 6289*x^12 +...
		

Crossrefs

Cf. A274965.
Antidiagonal sums of triangle A275670.

Programs

  • PARI
    {a(n) = my(A=1 +x*O(x^n)); for(k=0, n, A = A^2 + x^(n+2-k)); polcoeff(A, n)}
    for(n=0, 60, print1(a(n), ", "))

Formula

G.f.: A(x) = G(x,x), where G(x,y) = x*y + G(x,x*y)^2 is the g.f. of A275670.
G.f.: A(x) = sqrt(F(x) - x), where F(x) is the g.f. of A274965.

A275690 G.f. A(x) satisfies: 1 = ...(((((A(x) - x)^(1/3) - x^2)^(1/3) - x^3)^(1/3) - x^4)^(1/3) - x^5)^(1/3) -...- x^n)^(1/3) -..., an infinite series of nested cube roots.

Original entry on oeis.org

1, 1, 3, 9, 30, 99, 334, 1116, 3744, 12504, 41724, 138840, 461187, 1528554, 5057028, 16699293, 55051065, 181184337, 595400772, 1953715239, 6401926227, 20950064478, 68472011889, 223521012585, 728827015536, 2373846887673, 7723658267667, 25104640758607, 81519763177575, 264463605423009, 857192148657477, 2775964660002954, 8982278557410627, 29040795844301862, 93819208534071840, 302863860771034455, 976981070712962919, 3149327670664845204
Offset: 0

Views

Author

Paul D. Hanna, Aug 07 2016

Keywords

Crossrefs

Cf. A132331 (variant), A274965 (variant).

Programs

  • PARI
    {a(n) = my(A=1 +x*O(x^n)); for(k=0, n, A = A^3 + x^(n+1-k)); polcoeff(A, n)}
    for(n=0, 40, print1(a(n), ", "))
Showing 1-5 of 5 results.