A274965 G.f. A(x) satisfies: 1 = ...(((((A(x) - x)^(1/2) - x^2)^(1/2) - x^3)^(1/2) - x^4)^(1/2) - x^5)^(1/2) -...- x^n)^(1/2) -..., an infinite series of nested square roots.
1, 1, 2, 4, 9, 20, 46, 104, 238, 540, 1228, 2780, 6289, 14180, 31924, 71688, 160694, 359452, 802642, 1788988, 3980916, 8844064, 19618506, 43455324, 96121164, 212331796, 468445180, 1032216460, 2271818652, 4994434788, 10968013396, 24061103888, 52730956193, 115449870424, 252530306764, 551873275488, 1204991320660, 2628810554176, 5730295148952, 12480957518212, 27163290056278
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + x + 2*x^2 + 4*x^3 + 9*x^4 + 20*x^5 + 46*x^6 + 104*x^7 + 238*x^8 + 540*x^9 + 1228*x^10 +... Illustration of the definition. R1 = (A(x) - x)^(1/2); R2 = ((A(x) - x)^(1/2) - x^2)^(1/2); R3 = (((A(x) - x)^(1/2) - x^2)^(1/2) - x^3)^(1/2); R4 = ((((A(x) - x)^(1/2) - x^2)^(1/2) - x^3)^(1/2) - x^4)^(1/2); R5 = (((((A(x) - x)^(1/2) - x^2)^(1/2) - x^3)^(1/2) - x^4)^(1/2) - x^5)^(1/2); ... where the above series begin: R1 = 1 + x^2 + 2*x^3 + 4*x^4 + 8*x^5 + 17*x^6 + 36*x^7 + 78*x^8 + 168*x^9 + 364*x^10 + 786*x^11 + 1700*x^12 +... R2 = 1 + x^3 + 2*x^4 + 4*x^5 + 8*x^6 + 16*x^7 + 33*x^8 + 68*x^9 + 142*x^10 + 296*x^11 + 620*x^12 + 1296*x^13 +... R3 = 1 + x^4 + 2*x^5 + 4*x^6 + 8*x^7 + 16*x^8 + 32*x^9 + 65*x^10 + 132*x^11 + 270*x^12 + 552*x^13 + 1132*x^14 +... R4 = 1 + x^5 + 2*x^6 + 4*x^7 + 8*x^8 + 16*x^9 + 32*x^10 + 64*x^11 + 129*x^12 + 260*x^13 + 526*x^14 + 1064*x^15 +... R5 = 1 + x^6 + 2*x^7 + 4*x^8 + 8*x^9 + 16*x^10 + 32*x^11 + 64*x^12 + 128*x^13 + 257*x^14 + 516*x^15 + 1038*x^16 +... etc., so that 1 is obtained as a limit. GENERATING METHOD. The g.f. of this sequence can be obtained as a limit, as n grows, of the following process: start with 1 + x^n, then square the result and add x^(n-1), then square the result and add x^(n-2), then continue in this way until you reach x^1; this process is illustrated at n=6 as follows: S6 = 1 + x^6, S5 = S6^2 + x^5 = 1 + x^5 + 2*x^6 + x^12, S4 = S5^2 + x^4 = 1 + x^4 + 2*x^5 + 4*x^6 + x^10 + 4*x^11 + 6*x^12 + 2*x^17 +..., S3 = S4^2 + x^3 = 1 + x^3 + 2*x^4 + 4*x^5 + 8*x^6 + x^8 + 4*x^9 + 14*x^10 +..., S2 = S3^2 + x^2 = 1 + x^2 + 2*x^3 + 4*x^4 + 8*x^5 + 17*x^6 + 4*x^7 + 14*x^8 + 40*x^9 + 76*x^10 +..., S1 = S2^2 + x = 1 + x + 2*x^2 + 4*x^3 + 9*x^4 + 20*x^5 + 46*x^6 + 40*x^7 + 110*x^8 + 220*x^9 + 396*x^10 +..., which matches the g.f. A(x) up to x^6. RELATED SERIES. Note that the bisections are self-convolutions of integer sequences: sqrt( (A(x) + A(-x))/2 ) = 1 + x^2 + 4*x^4 + 19*x^6 + 92*x^8 + 446*x^10 + 2150*x^12 + 10280*x^14 + 48761*x^16 + 229558*x^18 + 1073278*x^20 + 4986624*x^22 + 23037102*x^24 + 105877968*x^26 + 484337300*x^28 +...+ A275751(n)*x^(2*n) +... sqrt( x*(A(x) - A(-x))/2 ) = x + 2*x^3 + 8*x^5 + 36*x^7 + 166*x^9 + 770*x^11 + 3574*x^13 + 16560*x^15 + 76516*x^17 + 352498*x^19 + 1619014*x^21 + 7414134*x^23 + 33855996*x^25 + 154181234*x^27 + 700333366*x^29 +...+ A275752(n)*x^(2*n+1) +...
Links
- Paul D. Hanna, Table of n, a(n) for n = 0..1030
Programs
-
PARI
{a(n) = my(A=1 +x*O(x^n)); for(k=0,n, A = A^2 + x^(n+1-k)); polcoeff(A,n)} for(n=0,30,print1(a(n),", "))
Comments