cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A274982 a(n) is the number of terms required in the Basel Problem, i.e., Sum_{m >= 1} 1/m^2, for the first appearance of n correct digits in the decimal expansion of Pi^2/6 to occur.

Original entry on oeis.org

1, 22, 203, 1071, 29354, 245891, 14959260, 14959260, 146023209, 1178930480, 20735515065, 121559317130, 4416249685106, 37826529360487, 155364605873808, 2291095531474075, 27417981382118579, 154501831890087986, 2116782166626093033, 13809261875873749757
Offset: 1

Views

Author

G. L. Honaker, Jr., Sep 23 2016

Keywords

Comments

a(n) = round(1/(floor((1/6)Pi^2 * 10^(n-1))/10^(n-1))) for all n up to at least n=1000 (and it can be shown that this formula almost certainly holds for all n beyond that; see A126809 for a similar problem). - Jon E. Schoenfield, Nov 06 2016, Nov 12 2016

Examples

			a(2) = 22 because 22 terms (Sum_{m = 1..22} 1/m^2) are required for the first two decimal digits of Pi^2/6 to occur for the first time.
		

Crossrefs

Programs

  • Perl
    use ntheory ":all"; use bignum try=>"GMP"; my ($dig,$sum,$exp) = (0, 0, (Pi(40)**2)/6); $exp =~ s/\.//; for my $m (1 .. 1e9) { $sum += 1/($m*$m); (my $str = $sum) =~ s/\.//; print ++$dig, " $m\n" while length($str) > $dig && index($exp, substr($str,0,$dig+1)) == 0; } # Dana Jacobsen, Sep 29 2016

Extensions

a(7)-a(11) from Dana Jacobsen, Oct 03 2016