cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A275043 Number A(n,k) of set partitions of [k*n] such that within each block the numbers of elements from all residue classes modulo k are equal for k>0, A(n,0)=1; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 5, 1, 1, 1, 5, 16, 15, 1, 1, 1, 9, 64, 131, 52, 1, 1, 1, 17, 298, 1613, 1496, 203, 1, 1, 1, 33, 1540, 25097, 69026, 22482, 877, 1, 1, 1, 65, 8506, 461105, 4383626, 4566992, 426833, 4140, 1, 1, 1, 129, 48844, 9483041, 350813126, 1394519922, 437665649, 9934563, 21147, 1
Offset: 0

Views

Author

Alois P. Heinz, Jul 14 2016

Keywords

Examples

			A(2,2) = 3: 1234, 12|34, 14|23.
A(2,3) = 5: 123456, 123|456, 126|345, 135|246, 156|234.
A(2,4) = 9: 12345678, 1234|5678, 1238|4567, 1247|3568, 1278|3456, 1346|2578, 1368|2457, 1467|2358, 1678|2345.
A(3,2) = 16: 123456, 1234|56, 1236|45, 1245|36, 1256|34, 12|3456, 12|34|56, 12|36|45, 1346|25, 1456|23, 14|2356, 14|23|56, 16|2345, 16|23|45, 14|25|36, 16|25|34.
Square array A(n,k) begins:
  1,   1,     1,       1,          1,            1,               1, ...
  1,   1,     1,       1,          1,            1,               1, ...
  1,   2,     3,       5,          9,           17,              33, ...
  1,   5,    16,      64,        298,         1540,            8506, ...
  1,  15,   131,    1613,      25097,       461105,         9483041, ...
  1,  52,  1496,   69026,    4383626,    350813126,     33056715626, ...
  1, 203, 22482, 4566992, 1394519922, 573843627152, 293327384637282, ...
		

Crossrefs

Rows n=0+1,2-5 give: A000012, A094373, A275100, A275101, A275102.
Main diagonal gives A275044.
Cf. A345400.

Programs

  • Maple
    A:= proc(n, k) option remember; `if`(k*n=0, 1, add(
           binomial(n, j)^k*(n-j)*A(j, k), j=0..n-1)/n)
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..12);
  • Mathematica
    A[n_, k_] := A[n, k] = If[k*n == 0, 1, Sum[Binomial[n, j]^k*(n-j)*A[j, k], {j, 0, n-1}]/n]; Table[A[n, d-n], {d, 0, 12}, {n, 0, d}] // Flatten (* Jean-François Alcover, Jan 17 2017, translated from Maple *)

A336439 a(n) = (n!)^n * [x^n] -log(Sum_{k>=0} (-x)^k / (k!)^n).

Original entry on oeis.org

0, 1, 1, 46, 63111, 4226436876, 21095962423437280, 11165885881625823212655540, 846105231095934499366980692096995455, 11911559696594230804398683820096471009503594129080, 39208751872375132639833577214095359308827747721266594509276656136
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 21 2020

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(n!)^n SeriesCoefficient[-Log[Sum[(-x)^k/(k!)^n, {k, 0, n}]], {x, 0, n}], {n, 0, 10}]
    b[n_, k_] := If[n == 0, 0, (-1)^(n + 1) - (1/n) Sum[(-1)^(n - j) Binomial[n, j]^k j b[j, k], {j, 1, n - 1}]];a[n_] := b[n, n]; Table[a[n], {n, 0, 10}]

A336441 a(n) = (n!)^n * [x^n] exp(Sum_{k>=1} x^k / k^n).

Original entry on oeis.org

1, 1, 3, 71, 30232, 435772624, 357189846148256, 25740403176657987904960, 234446578865185870182814945640448, 363178754511398964104990417951192651478859776, 122088173887703514886799765831338556792096849201928981184512
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 21 2020

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(n!)^n SeriesCoefficient[Exp[Sum[x^k/k^n, {k, 1, n}]], {x, 0, n}], {n, 0, 10}]
    b[n_, k_] := If[n == 0, 1, (1/n) Sum[(Binomial[n, j] (n - j - 1)!)^k (n - j) b[j, k], {j, 0, n - 1}]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 10}]

Formula

From Vaclav Kotesovec, Oct 28 2024: (Start)
a(n) ~ (n!)^(n-1).
a(n) ~ (2*Pi)^((n-1)/2) * n^(n^2 - n/2 - 1/2) / exp(n^2 - n - 1/12). (End)

A336831 a(n) = (n!)^n * [x^n] exp(-Sum_{k>=1} (-x)^k / (k!)^n).

Original entry on oeis.org

1, 1, 1, 10, 4359, 91406876, 111657668637280, 11436881770074767723291, 137560155520600195617494951186559, 260122627893213770028102613184254361777327032, 99781796293430843492956500115058179262448159117567276656136
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 05 2020

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(n!)^n SeriesCoefficient[Exp[-Sum[(-x)^k/(k!)^n, {k, 1, n}]], {x, 0, n}], {n, 0, 10}]
    b[n_, k_] := b[n, k] = If[n == 0, 1, -Sum[(-1)^(n - j) Binomial[n, j]^k (n - j) b[j, k], {j, 0, n - 1}]/n]; a[n_] := b[n, n]; Table[a[n], {n, 0, 10}]
Showing 1-4 of 4 results.