cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A275069 Number A(n,k) of set partitions of [n] such that i-j is a multiple of k for all i,j belonging to the same block; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 5, 1, 1, 1, 1, 2, 15, 1, 1, 1, 1, 1, 4, 52, 1, 1, 1, 1, 1, 2, 10, 203, 1, 1, 1, 1, 1, 1, 4, 25, 877, 1, 1, 1, 1, 1, 1, 2, 8, 75, 4140, 1, 1, 1, 1, 1, 1, 1, 4, 20, 225, 21147, 1, 1, 1, 1, 1, 1, 1, 2, 8, 50, 780, 115975, 1
Offset: 0

Views

Author

Alois P. Heinz, Jul 15 2016

Keywords

Examples

			A(5,0) = 1: 1|2|3|4|5.
A(5,1) = 52 = A000110(5).
A(5,2) = 10: 135|24, 13|24|5, 135|2|4, 13|2|4|5, 15|24|3, 1|24|35, 1|24|3|5, 15|2|3|4, 1|2|35|4, 1|2|3|4|5.
A(5,3) = 4: 14|25|3, 14|2|3|5, 1|25|3|4, 1|2|3|4|5.
A(5,4) = 2: 15|2|3|4, 1|2|3|4|5.
Square array A(n,k) begins:
  1,      1,    1,   1,   1,  1,  1, 1, 1, 1, 1, ...
  1,      1,    1,   1,   1,  1,  1, 1, 1, 1, 1, ...
  1,      2,    1,   1,   1,  1,  1, 1, 1, 1, 1, ...
  1,      5,    2,   1,   1,  1,  1, 1, 1, 1, 1, ...
  1,     15,    4,   2,   1,  1,  1, 1, 1, 1, 1, ...
  1,     52,   10,   4,   2,  1,  1, 1, 1, 1, 1, ...
  1,    203,   25,   8,   4,  2,  1, 1, 1, 1, 1, ...
  1,    877,   75,  20,   8,  4,  2, 1, 1, 1, 1, ...
  1,   4140,  225,  50,  16,  8,  4, 2, 1, 1, 1, ...
  1,  21147,  780, 125,  40, 16,  8, 4, 2, 1, 1, ...
  1, 115975, 2704, 375, 100, 32, 16, 8, 4, 2, 1, ...
		

Crossrefs

A(k*n,n) for k=1-4 gives: A000012, A000079, A000351, A001024.

Programs

  • Maple
    with(combinat):
    A:= (n, k)-> mul(bell(floor((n+i)/k)), i=0..k-1):
    seq(seq(A(n, d-n), n=0..d), d=0..14);
  • Mathematica
    A[n_, k_] := Product[BellB[Floor[(n+i)/k]], {i, 0, k-1}]; Table[A[n, d-n], {d, 0, 14}, {n, 0, d}] // Flatten (* Jean-François Alcover, Feb 17 2017, translated from Maple *)

Formula

A(n,k) = Product_{i=0..k-1} A000110(floor((n+i)/k)).