A275069 Number A(n,k) of set partitions of [n] such that i-j is a multiple of k for all i,j belonging to the same block; square array A(n,k), n>=0, k>=0, read by antidiagonals.
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 5, 1, 1, 1, 1, 2, 15, 1, 1, 1, 1, 1, 4, 52, 1, 1, 1, 1, 1, 2, 10, 203, 1, 1, 1, 1, 1, 1, 4, 25, 877, 1, 1, 1, 1, 1, 1, 2, 8, 75, 4140, 1, 1, 1, 1, 1, 1, 1, 4, 20, 225, 21147, 1, 1, 1, 1, 1, 1, 1, 2, 8, 50, 780, 115975, 1
Offset: 0
Examples
A(5,0) = 1: 1|2|3|4|5. A(5,1) = 52 = A000110(5). A(5,2) = 10: 135|24, 13|24|5, 135|2|4, 13|2|4|5, 15|24|3, 1|24|35, 1|24|3|5, 15|2|3|4, 1|2|35|4, 1|2|3|4|5. A(5,3) = 4: 14|25|3, 14|2|3|5, 1|25|3|4, 1|2|3|4|5. A(5,4) = 2: 15|2|3|4, 1|2|3|4|5. Square array A(n,k) begins: 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... 1, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, ... 1, 15, 4, 2, 1, 1, 1, 1, 1, 1, 1, ... 1, 52, 10, 4, 2, 1, 1, 1, 1, 1, 1, ... 1, 203, 25, 8, 4, 2, 1, 1, 1, 1, 1, ... 1, 877, 75, 20, 8, 4, 2, 1, 1, 1, 1, ... 1, 4140, 225, 50, 16, 8, 4, 2, 1, 1, 1, ... 1, 21147, 780, 125, 40, 16, 8, 4, 2, 1, 1, ... 1, 115975, 2704, 375, 100, 32, 16, 8, 4, 2, 1, ...
Links
- Alois P. Heinz, Antidiagonals n = 0..140, flattened
- Wikipedia, Partition of a set
Crossrefs
Programs
-
Maple
with(combinat): A:= (n, k)-> mul(bell(floor((n+i)/k)), i=0..k-1): seq(seq(A(n, d-n), n=0..d), d=0..14);
-
Mathematica
A[n_, k_] := Product[BellB[Floor[(n+i)/k]], {i, 0, k-1}]; Table[A[n, d-n], {d, 0, 14}, {n, 0, d}] // Flatten (* Jean-François Alcover, Feb 17 2017, translated from Maple *)
Formula
A(n,k) = Product_{i=0..k-1} A000110(floor((n+i)/k)).