A275100 Number of set partitions of [3*n] such that within each block the numbers of elements from all residue classes modulo n are equal for n>0, a(0)=1.
1, 5, 16, 64, 298, 1540, 8506, 48844, 286498, 1699300, 10136746, 60643324, 363328498, 2178376660, 13065476986, 78378513004, 470228031298, 2821239047620, 16927046865226, 101561118929884, 609363226794898, 3656168900416180, 21936982021437466, 131621797985445964
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- J.-M. Sixdeniers, K. A. Penson and A. I. Solomon, Extended Bell and Stirling Numbers From Hypergeometric Exponentiation, J. Integer Seqs. Vol. 4 (2001), #01.1.4.
- Index entries for linear recurrences with constant coefficients, signature (10,-27,18).
Crossrefs
Row n=3 of A275043.
Programs
-
Mathematica
CoefficientList[Series[-(21x^3-7x^2-5x+1)/((x-1)(6x-1)(3x-1)),{x,0,30}],x] (* Harvey P. Dale, Dec 15 2018 *)
Formula
G.f.: -(21*x^3-7*x^2-5*x+1)/((x-1)*(6*x-1)*(3*x-1)).