A275102 Number of set partitions of [5*n] such that within each block the numbers of elements from all residue classes modulo n are equal for n>0, a(0)=1.
1, 52, 1496, 69026, 4383626, 350813126, 33056715626, 3464129078126, 386652630390626, 44687884101953126, 5260857687009765626, 625229219690048828126, 74663901894300244140626, 8937876284201001220703126, 1071238363160070006103515626, 128470217809820900030517578126
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..481
- J.-M. Sixdeniers, K. A. Penson and A. I. Solomon, Extended Bell and Stirling Numbers From Hypergeometric Exponentiation, J. Integer Seqs. Vol. 4 (2001), #01.1.4.
Crossrefs
Row n=5 of A275043.
Formula
G.f.: -(685800000*x^7 -675420000*x^6 +136905500*x^5 -8043550*x^4 +17550*x^3 +9249*x^2 -194*x+1) / ((x-1) *(30*x-1) *(5*x-1) *(60*x-1) *(10*x-1) *(120*x-1) *(20*x-1)).