A275123 Even numbers n such that sigma(n) divides sigma(n^n).
4, 16, 64, 100, 196, 484, 676, 1024, 1156, 1296, 1444, 1936, 2116, 3364, 3844, 4096, 4900, 5476, 5776, 6400, 6724, 7396, 8836, 10816, 11236, 12100, 13456, 13924, 14884, 15376, 16900, 17956, 20164, 21316, 23716, 24964, 26896, 27556, 28900, 31684, 33124, 36100
Offset: 1
Keywords
Examples
4 is a term because sigma(4^4) = 511 is divisible by sigma(4) = 7.
Links
- Robert Israel, Table of n, a(n) for n = 1..500
Programs
-
Maple
filter:= proc(n) local F,t,b,r; F:= ifactors(n)[2]; b:= mul(t[1]^(t[2]+1)-1, t=F); r:= 1; for t in F do r:= r * (t[1] &^ (t[2]*n+1)-1) mod b od; r = 0; end proc: select(filter, [seq(i,i=2..10^5,2)]); # Robert Israel, Jul 19 2016
-
Mathematica
Select[Range[2, 10^4, 2], Divisible[DivisorSigma[1, #^#], DivisorSigma[1, #]] &] (* Michael De Vlieger, Jul 19 2016 *)
-
PARI
/* Requires a large PARI stack to return even the first few terms */ is(n) = Mod(n, 2)==0 && Mod(sigma(n^n), sigma(n))==0 \\ Felix Fröhlich, Jul 19 2016
Extensions
a(8)-a(22) from Michel Marcus, Jul 19 2016
More terms from Robert Israel, Jul 19 2016
Comments