cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A275205 Partial sums of the Dirichlet inverse of the Euler totient function.

Original entry on oeis.org

1, 0, -2, -3, -7, -5, -11, -12, -14, -10, -20, -18, -30, -24, -16, -17, -33, -31, -49, -45, -33, -23, -45, -43, -47, -35, -37, -31, -59, -67, -97, -98, -78, -62, -38, -36, -72, -54, -30, -26, -66, -78, -120, -110, -102, -80, -126, -124, -130
Offset: 1

Views

Author

Mats Granvik, Jul 19 2016

Keywords

Comments

The matrix A191898 seen as a 2n X 2n block matrix A = {{a, b},{c, d}} where a, b, c and d are n X n matrices, A191898 has the property that the sum: 1 - a - d = trace(A191898). This is demonstrated by the second Mathematica program below.

Crossrefs

Programs

  • Maple
    a_list := len -> ListTools:-PartialSums([seq(mul(1-i, i=numtheory:-factorset(k)), k=1..len)]): a_list(49); # Peter Luschny, Jul 20 2016
  • Mathematica
    Clear[a, n, d]; a[n_] := If[n < 1, 0, Sum[d MoebiusMu@d, {d, Divisors[n]}]]; Accumulate[Table[a[n], {n, 1, 49}]] (* After Michael Somos in A023900 *)
    Clear[jj];
    jj = 49;
    Table[
    Clear[nn, A, B, AB, n, k];
    nn = 2*ii;
    A = Table[
       Table[If[Mod[n, k] == 0, Sqrt[k], 0], {k, 1, nn}], {n, 1, nn}];
    B = Table[
       Table[If[Mod[k, n] == 0, MoebiusMu[n]*Sqrt[n], 0], {k, 1, nn}], {n,
         1, nn}]; MatrixForm[AB = A.B];
    a = Table[Table[AB[[n, k]], {k, 1, nn/2}], {n, 1, nn/2}];
    d = Table[Table[AB[[n, k]], {k, nn/2 + 1, nn}], {n, nn/2 + 1, nn}];
    1 - Total[Total[a + d]], {ii, 1, jj}]

Formula

a(n) = Trace of matrix A191898.
a(n) = Sum_{k=1..n} A023900(k).
a(n) = 2 - Sum_{m=1..n} Sum_{k=1..n} A191898(m,k).
a(n) = 1 - Sum_{m=1..n} Sum_{k=1..n} A191898(m,k) - Sum_{m=n+1..2*n} Sum_{k=n+1..2*n} A191898(m,k).
a(n) = Sum_{k=1..n} k * mu(k) * floor(n/k), where mu(k) is the Moebius function. - Daniel Suteu, Jun 11 2018