cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A275238 a(n) = n*(10^floor(log_10(n)+1) + 1) + (-1)^n.

Original entry on oeis.org

1, 10, 23, 32, 45, 54, 67, 76, 89, 98, 1011, 1110, 1213, 1312, 1415, 1514, 1617, 1716, 1819, 1918, 2021, 2120, 2223, 2322, 2425, 2524, 2627, 2726, 2829, 2928, 3031, 3130, 3233, 3332, 3435, 3534, 3637, 3736, 3839, 3938, 4041, 4140, 4243, 4342, 4445, 4544, 4647, 4746, 4849, 4948, 5051, 5150, 5253, 5352, 5455, 5554
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 21 2016

Keywords

Comments

Concatenation of n with n+(-1)^n (A004442).
Subsequence of A248378.
Primes in this sequence: 23, 67, 89, 1213, 3637, 4243, 5051, 5657, 6263, 6869, 7879, 8081, 9091, 9293, 9697, 102103, ... (A030458).
Numbers n such that a(n) is prime: 2, 6, 8, 12, 36, 42, 50, 56, 62, 68, 78, 80, 90, 92, 96, 102, 108, 120, 126, 138, ... (A030457).

Examples

			a(0) =  0 + 1 = 1;
a(1) = 11 - 1 = 10;
a(2) = 22 + 1 = 23;
a(3) = 33 - 1 = 32;
a(4) = 44 + 1 = 45;
a(5) = 55 - 1 = 54, etc.
or
a(0) =  1 -> concatenation of 0 with 0 + (-1)^0 = 1;
a(1) = 10 -> concatenation of 1 with 1 + (-1)^1 = 0;
a(2) = 23 -> concatenation of 2 with 2 + (-1)^2 = 3;
a(3) = 32 -> concatenation of 3 with 3 + (-1)^3 = 2;
a(4) = 45 -> concatenation of 4 with 4 + (-1)^4 = 5;
a(5) = 54 -> concatenation of 5 with 5 + (-1)^5 = 4, etc.
........................................................
a(2k) = 1, 23, 45, 67, 89, 1011, 1213, 1415, 1617, 1819, ...
		

Crossrefs

Programs

  • Mathematica
    Table[n (10^Floor[Log[10, n] + 1] + 1) + (-1)^n, {n, 0, 55}]
  • PARI
    a(n) = if(n, n*(10^(logint(n,10)+1) + 1) + (-1)^n, 1) \\ Charles R Greathouse IV, Jul 21 2016

Formula

a(n) = A020338(n) + A033999(n).
a(2k) = A030656(k).
A064834(a(n)) > 0, for n > 0.
a(n) ~ 10*n*10^floor(c*log(n)), where c = 1/log(10) = 0.4342944819... = A002285.