cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A275240 Highly composite numbers of class 2 (see comment in A275239).

Original entry on oeis.org

5, 9, 10, 20, 40, 80, 84, 192, 210, 288, 432, 480, 1200, 1320, 1800, 2640, 3600, 3780, 6480, 7200, 8400, 10920, 13860, 21840, 31680, 32760, 69300, 73920, 75600, 100800, 120120, 138600, 226800, 240240, 302400, 388080, 393120, 771120, 776160, 942480, 1310400
Offset: 1

Views

Author

Keywords

Crossrefs

A275241 Highly composite numbers of class 3 (see comment in A275239).

Original entry on oeis.org

7, 14, 28, 42, 90, 216, 300, 504, 1296, 1344, 1512, 1980, 3024, 3960, 8640, 9360, 11880, 15840, 22680, 33600, 35280, 36960, 70560, 85680, 120960, 151200, 249480, 342720, 415800, 856800, 960960, 982800, 1552320, 1572480, 1884960, 3243240, 3880800, 3931200
Offset: 1

Views

Author

Keywords

Crossrefs

A275242 Highly composite numbers of class 4 (see comment in A275239).

Original entry on oeis.org

11, 15, 32, 54, 96, 264, 396, 528, 540, 1560, 2016, 3120, 4032, 4200, 8820, 10560, 10800, 13440, 16380, 23760, 37440, 37800, 71280, 79200, 87360, 90720, 128520, 163800, 257040, 352800, 369600, 428400, 443520, 861840, 887040, 997920, 1580040, 1940400, 1965600
Offset: 1

Views

Author

Keywords

Crossrefs

A275243 Highly composite numbers of class 5 (see comment in A275239).

Original entry on oeis.org

13, 21, 44, 56, 100, 108, 270, 450, 560, 576, 600, 1584, 1848, 2100, 3240, 4320, 9072, 9900, 11088, 14040, 16800, 28080, 39600, 40320, 80640, 92400, 141120, 143640, 171360, 287280, 383040, 453600, 471240, 900900, 1028160, 1053360, 1670760, 1995840, 2106720
Offset: 1

Views

Author

Keywords

Crossrefs

A275244 Highly composite numbers of class 6 (see comment in A275239).

Original entry on oeis.org

17, 22, 45, 64, 66, 112, 126, 280, 468, 624, 630, 1620, 1890, 2340, 3696, 4620, 11340, 14280, 17640, 28560, 41580, 81900, 95040, 95760, 147840, 176400, 180180, 294840, 403200, 411840, 458640, 480480, 907200, 917280, 1113840, 1713600, 1867320, 2217600, 3825360
Offset: 1

Views

Author

Keywords

Crossrefs

A335029 Numbers that are not practical (A237287) and have more divisors than any smaller number that is not practical.

Original entry on oeis.org

3, 9, 10, 44, 70, 225, 315, 770, 1575, 2835, 3465, 10010, 17325, 31185, 45045, 121275, 135135, 225225, 405405, 675675, 1576575, 2027025, 2297295, 3828825, 6891885, 11486475, 26801775, 34459425, 43648605, 72747675, 130945815, 218243025, 509233725, 654729075, 1003917915
Offset: 1

Views

Author

Amiram Eldar, May 20 2020

Keywords

Comments

The corresponding numbers of divisors are 2, 3, 4, 6, 8, 9, 12, 16, 18, 20, 24, 32, 36, 40, 48, 54, 64, 72, 80, 96, 108, 120, 128, 144, 160, 192, 216, 240, 256, 288, 320, 384, 432, 480, 512, ...
Of the first 39 terms, 34 terms are also in A038547.
None of the terms are highly composite (A002182) since all the highly composite numbers are practical numbers (A005153).

Examples

			The first 5 numbers that are not practical are 3, 5, 7, 9, 10. Their numbers of divisors are 2, 2, 2, 3, 4. The record numbers of divisors are 2, 3 and 4 which occur at 3, 9 and 10.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^(e + 1) - 1)/(p - 1); pracQ[fct_] := (ind = Position[fct[[;; , 1]]/(1 + FoldList[Times, 1, f @@@ Most@fct]), _?(# > 1 &)]) == {}; seq = {}; dm = 1; Do[fct = FactorInteger[n]; d = Times @@ (1 + Last/@ fct); If[d > dm && !pracQ[fct], dm = d; AppendTo[seq, n]], {n, 3, 10^5}]; seq
Showing 1-6 of 6 results.