A275282 Number of set partitions of [n] with symmetric block size list.
1, 1, 2, 2, 7, 9, 47, 80, 492, 985, 7197, 16430, 139316, 361737, 3425683, 9939134, 103484333, 329541459, 3747921857, 12980700318, 159811532315, 598410986533, 7902918548186, 31781977111506, 447462660895105, 1920559118957107, 28699615818386524, 130838216971937408
Offset: 0
Keywords
Examples
a(3) = 2: 123, 1|2|3. a(4) = 7: 1234, 12|34, 13|24, 14|23, 1|23|4, 1|24|3, 1|2|3|4. a(5) = 9: 12345, 12|3|45, 13|2|45, 1|234|5, 1|235|4, 14|2|35, 1|245|3, 15|2|34, 1|2|3|4|5.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..400
- Wikipedia, Partition of a set
Crossrefs
Row sums of A275281.
Programs
-
Maple
b:= proc(n, s) option remember; `if`(n>s, binomial(n-1, n-s-1), 1) +add(binomial(n-1, j-1)* b(n-j, s+j) *binomial(s+j-1, j-1), j=1..(n-s)/2) end: a:= n-> b(n, 0): seq(a(n), n=0..30);
-
Mathematica
b[n_, s_] := b[n, s] = If[n > s, Binomial[n-1, n-s-1], 1] + Sum[Binomial[n - 1, j - 1]*b[n - j, s + j]*Binomial[s + j - 1, j - 1], {j, 1, (n-s)/2}]; a[n_] := b[n, 0]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, May 27 2018, from Maple *)
Formula
a(n) = Sum_{k=0..n} A275281(n,k).