cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A275282 Number of set partitions of [n] with symmetric block size list.

Original entry on oeis.org

1, 1, 2, 2, 7, 9, 47, 80, 492, 985, 7197, 16430, 139316, 361737, 3425683, 9939134, 103484333, 329541459, 3747921857, 12980700318, 159811532315, 598410986533, 7902918548186, 31781977111506, 447462660895105, 1920559118957107, 28699615818386524, 130838216971937408
Offset: 0

Views

Author

Alois P. Heinz, Jul 21 2016

Keywords

Examples

			a(3) = 2: 123, 1|2|3.
a(4) = 7: 1234, 12|34, 13|24, 14|23, 1|23|4, 1|24|3, 1|2|3|4.
a(5) = 9: 12345, 12|3|45, 13|2|45, 1|234|5, 1|235|4, 14|2|35, 1|245|3, 15|2|34, 1|2|3|4|5.
		

Crossrefs

Row sums of A275281.

Programs

  • Maple
    b:= proc(n, s) option remember; `if`(n>s,
          binomial(n-1, n-s-1), 1) +add(binomial(n-1, j-1)*
          b(n-j, s+j) *binomial(s+j-1, j-1), j=1..(n-s)/2)
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=0..30);
  • Mathematica
    b[n_, s_] := b[n, s] = If[n > s, Binomial[n-1, n-s-1], 1] + Sum[Binomial[n - 1, j - 1]*b[n - j, s + j]*Binomial[s + j - 1, j - 1], {j, 1, (n-s)/2}];
    a[n_] := b[n, 0];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, May 27 2018, from Maple *)

Formula

a(n) = Sum_{k=0..n} A275281(n,k).