cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A275322 Decimal expansion of AGM(1, sqrt(2))^2/Pi.

Original entry on oeis.org

4, 5, 6, 9, 4, 6, 5, 8, 1, 0, 4, 4, 4, 6, 3, 6, 2, 5, 3, 7, 4, 9, 6, 6, 6, 2, 2, 5, 4, 7, 6, 8, 3, 3, 3, 6, 6, 1, 1, 7, 6, 7, 7, 3, 0, 0, 1, 4, 8, 3, 1, 5, 0, 8, 3, 9, 4, 3, 6, 2, 2, 4, 7, 2, 6, 7, 4, 8, 4, 3, 5, 8, 0, 7, 0, 8, 0, 5, 3, 8, 5, 5
Offset: 0

Views

Author

Dimitris Valianatos, Jul 23 2016

Keywords

Comments

Conjecture: Equals Product_{n odd} (n/(n+2) if n == 1 (mod 4), (n+2)/n otherwise) = (1/3) * (5/3) * (5/7) * (9/7) * (9/11) * (13/11) * (13/15) * (17/15) * (17/19) * (21/19) * (21/23) * (25/23) * (25/27) * ...

Examples

			0.45694658104446362537496662254768...
		

Crossrefs

Cf. A053004 (AGM(1, sqrt(2))).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); 8*Pi(R)^2/Gamma(1/4)^4; // G. C. Greubel, Oct 07 2018
  • Maple
    evalf(GaussAGM(1,sqrt(2))^2/Pi,100); # Muniru A Asiru, Oct 08 2018
  • Mathematica
    First@ RealDigits@ N[ArithmeticGeometricMean[1, Sqrt[2]]^2/Pi, 120] (* Michael De Vlieger, Jul 26 2016 *)
  • PARI
    agm(1, sqrt(2)) ^ 2 / Pi
    
  • PARI
    8*Pi^2/gamma(1/4)^4 \\ Altug Alkan, Oct 08 2018
    

Formula

Equals 8*Pi^2/Gamma(1/4)^4 = 4*Gamma(3/4)^2/Gamma(1/4)^2. - Vaclav Kotesovec, Sep 22 2016