A275322 Decimal expansion of AGM(1, sqrt(2))^2/Pi.
4, 5, 6, 9, 4, 6, 5, 8, 1, 0, 4, 4, 4, 6, 3, 6, 2, 5, 3, 7, 4, 9, 6, 6, 6, 2, 2, 5, 4, 7, 6, 8, 3, 3, 3, 6, 6, 1, 1, 7, 6, 7, 7, 3, 0, 0, 1, 4, 8, 3, 1, 5, 0, 8, 3, 9, 4, 3, 6, 2, 2, 4, 7, 2, 6, 7, 4, 8, 4, 3, 5, 8, 0, 7, 0, 8, 0, 5, 3, 8, 5, 5
Offset: 0
Examples
0.45694658104446362537496662254768...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..10000
- Markus Faulhuber, Anupam Gumber, and Irina Shafkulovska, The AGM of Gauss, Ramanujan's corresponding theory, and spectral bounds of self-adjoint operators, arXiv:2209.04202 [math.CA], 2022, p. 21.
Programs
-
Magma
SetDefaultRealField(RealField(100)); R:= RealField(); 8*Pi(R)^2/Gamma(1/4)^4; // G. C. Greubel, Oct 07 2018
-
Maple
evalf(GaussAGM(1,sqrt(2))^2/Pi,100); # Muniru A Asiru, Oct 08 2018
-
Mathematica
First@ RealDigits@ N[ArithmeticGeometricMean[1, Sqrt[2]]^2/Pi, 120] (* Michael De Vlieger, Jul 26 2016 *)
-
PARI
agm(1, sqrt(2)) ^ 2 / Pi
-
PARI
8*Pi^2/gamma(1/4)^4 \\ Altug Alkan, Oct 08 2018
Formula
Equals 8*Pi^2/Gamma(1/4)^4 = 4*Gamma(3/4)^2/Gamma(1/4)^2. - Vaclav Kotesovec, Sep 22 2016
Comments