cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A275367 Number of odd divisors of n^2.

Original entry on oeis.org

1, 1, 3, 1, 3, 3, 3, 1, 5, 3, 3, 3, 3, 3, 9, 1, 3, 5, 3, 3, 9, 3, 3, 3, 5, 3, 7, 3, 3, 9, 3, 1, 9, 3, 9, 5, 3, 3, 9, 3, 3, 9, 3, 3, 15, 3, 3, 3, 5, 5, 9, 3, 3, 7, 9, 3, 9, 3, 3, 9, 3, 3, 15, 1, 9, 9, 3, 3, 9, 9, 3, 5, 3, 3, 15, 3, 9, 9, 3, 3, 9, 3, 3, 9, 9, 3, 9, 3, 3, 15, 9, 3, 9
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jul 24 2016

Keywords

Comments

All terms are odd.
First differs from A023136 at a(17).

Crossrefs

Programs

  • Maple
    A275367 := proc(n) local a, d;
        a := 1 ;
        for d in ifactors(n)[2] do
            if op(1, d) > 2 then
                a := a*(2*op(2, d)+1) ;
            end if;
        end do:
        a ;
    end proc:
    seq(A275367(n),n=1..40) ; # R. J. Mathar, Mar 20 2023
  • Mathematica
    Table[Count[Divisors[n^2], ?OddQ], {n, 120}] (* _Michael De Vlieger, Jul 25 2016 *)
    f[2, e_] := 1; f[p_, e_] := 2*e + 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 11 2020 *)
  • PARI
    a(n) = sumdiv(n^2, d, d%2); \\ Michel Marcus, Jul 25 2016
    
  • PARI
    a(n)=my(f=factor(n>>valuation(n,2))[,2]); prod(i=1,#f,2*f[i]+1) \\ Charles R Greathouse IV, Jul 28 2016

Formula

a(n) = A001227(n^2).
a(2n + 1) = A048691(2n + 1).
a(n) = A000005(n^2) if n is odd, else A000005(2*n^2) - A000005(n^2).
Multiplicative with a(2^e) = 1, a(p^e) = 2*e + 1 for odd prime p. - Andrew Howroyd, Jul 20 2018
Dirichlet g.f.: (zeta(s)^3/zeta(2*s))*(2^s-1)/(2^s+1). - Amiram Eldar, Dec 08 2022
Sum_{k=1..n} a(k) ~ n*log(n)^2/Pi^2 + 2*n*log(n)*((3*gamma + 4*log(2)/3 - 1)/Pi^2 - 12*zeta'(2)/Pi^4) + 2*n*((1 + 3*gamma^2 - 4*log(2)/3 - 2*log(2)^2/9 + gamma*(4*log(2) - 3) - 3*sg1)/Pi^2 - 4*((9*gamma*zeta'(2) + (4*log(2) - 3)*zeta'(2) + 3*zeta''(2))/Pi^4) + 144*zeta'(2)^2/Pi^6), where gamma is the Euler-Mascheroni constant A001620 and sg1 is the first Stieltjes constant (see A082633). - Vaclav Kotesovec, Dec 08 2022