A275385 Number of labeled functional digraphs on n nodes with only odd sized cycles and such that every vertex is at a distance of at most 1 from a cycle.
1, 1, 3, 12, 73, 580, 5601, 63994, 844929, 12647016, 211616065, 3914510446, 79320037281, 1747219469164, 41569414869633, 1062343684252530, 29023112392093441, 844101839207139280, 26038508978625589377, 849150487829425227094, 29189561873274715264545
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..411
Programs
-
Maple
b:= proc(n) option remember; `if`(n=0, 1, add(`if`(j::odd, (j-1)!*b(n-j)*binomial(n-1, j-1), 0), j=1..n)) end: a:= n-> add(b(j)*j^(n-j)*binomial(n, j), j=0..n): seq(a(n), n=0..20); # Alois P. Heinz, Jul 25 2016
-
Mathematica
nn = 20; Range[0, nn]! CoefficientList[Series[Sqrt[(1 + z*Exp[z])/(1 - z*Exp[z])], {z, 0, nn}], z]
-
PARI
default(seriesprecision, 30); S=sqrt((1 + x*exp(x))/(1 - x*exp(x))); v=Vec(S); for(n=2,#v-1,v[n+1]*=n!); v \\ Charles R Greathouse IV, Jul 29 2016
Formula
E.g.f.: sqrt((1 + z*exp(z))/(1 - z*exp(z))).
Exponential transform of A216401.
a(n) ~ 2 * n^n / (sqrt(1+LambertW(1)) * LambertW(1)^n * exp(n)). - Vaclav Kotesovec, Jun 26 2022
Comments