A275389 Number of set partitions of [n] with a strongly unimodal block size list.
1, 1, 1, 4, 7, 19, 71, 219, 759, 2697, 12395, 47477, 231950, 1040116, 4851742, 26690821, 131478031, 736418510, 4262619682, 24680045903, 145629814329, 935900941506, 5778263418232, 37626913475878, 257550263109475, 1782180357952449, 12526035635331581
Offset: 0
Keywords
Examples
a(3) = 4: 123, 12|3, 13|2, 1|23. a(4) = 7: 1234, 123|4, 124|3, 134|2, 1|234, 1|23|4, 1|24|3. a(5) = 19: 12345, 1234|5, 1235|4, 123|45, 1245|3, 124|35, 125|34, 12|345, 1345|2, 134|25, 135|24, 13|245, 145|23, 14|235, 15|234, 1|2345, 1|234|5, 1|235|4, 1|245|3.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..677
- Wikipedia, Partition of a set
Programs
-
Maple
b:= proc(n, i, t) option remember; `if`(t=0 and n>i*(i-1)/2, 0, `if`(n=0, 1, add(b(n-j, j, 0)*binomial(n-1, j-1), j=1..min(n, i-1)) +`if`(t=1, add(b(n-j, j, 1)*binomial(n-1, j-1), j=i+1..n), 0))) end: a:= n-> b(n, 0, 1): seq(a(n), n=0..30);
-
Mathematica
b[n_, i_, t_] := b[n, i, t] = If[t==0 && n > i*(i-1)/2, 0, If[n==0, 1, Sum[b[n-j, j, 0]*Binomial[n-1, j-1], {j, 1, Min[n, i-1]}] + If[t==1, Sum[b[n-j, j, 1]*Binomial[n-1, j-1], {j, i+1, n}], 0]]]; a[n_] := b[n, 0, 1]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 07 2017, translated from Maple *)
Comments