cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A286077 Number of permutations of [n] with a strongly unimodal cycle size list.

Original entry on oeis.org

1, 1, 1, 5, 16, 80, 468, 3220, 24436, 218032, 2114244, 22759788, 267150264, 3413938512, 46668380592, 690881123856, 10841100147072, 181434400544160, 3215124610986240, 60280035304993920, 1186176116251848960, 24624604679704053120, 534223121657911528320
Offset: 0

Views

Author

Alois P. Heinz, May 01 2017

Keywords

Comments

Each cycle is written with the smallest element first and cycles are arranged in increasing order of their first elements.
Strongly unimodal means strictly increasing then strictly decreasing.

Crossrefs

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(t=0 and n>i*(i-1)/2, 0,
          `if`(n=0, 1, add(b(n-j, j, 0)*binomial(n-1, j-1)*
          (j-1)!, j=1..min(n, i-1))+`if`(t=1, add(b(n-j, j, 1)*
           binomial(n-1, j-1)*(j-1)!, j=i+1..n), 0)))
        end:
    a:= n-> b(n, 0, 1):
    seq(a(n), n=0..30);
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[t == 0 && n > i*(i-1)/2, 0, If[n == 0, 1, Sum[b[n-j, j, 0]*Binomial[n-1, j-1]*(j-1)!, {j, 1, Min[n, i-1]}] + If[t == 1, Sum[b[n-j, j, 1]*Binomial[n-1, j-1]*(j-1)!, {j, i+1, n}], 0]]];
    a[n_] := b[n, 0, 1];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, May 28 2018, from Maple *)

A297464 Solution (a(n)) of the system of 4 complementary equations in Comments.

Original entry on oeis.org

1, 4, 8, 11, 14, 18, 21, 24, 28, 31, 34, 38, 41, 44, 48, 51, 54, 58, 61, 64, 68, 71, 74, 78, 81, 84, 88, 91, 94, 98, 101, 104, 108, 111, 114, 118, 121, 124, 128, 131, 134, 138, 141, 144, 148, 151, 154, 158, 161, 164, 168, 171, 174, 178, 181, 184, 188, 191
Offset: 0

Views

Author

Clark Kimberling, Apr 19 2018

Keywords

Comments

Define sequences a(n), b(n), c(n), d(n) recursively, starting with a(0) = 1, b(0) = 2, c(0) = 3;:
a(n) = least new;
b(n) = least new;
c(n) = least new;
d(n) = a(n) + b(n) + c(n);
where "least new k" means the least positive integer not yet placed.
***
Conjecture: for all n >= 0,
0 <= 10n - 6 - 3 a(n) <= 2
0 <= 10n - 2 - 3 b(n) <= 3
0 <= 10n + 1 - 3 c(n) <= 3
0 <= 10n - 3 - d(n) <= 2
***
The sequences a,b,c,d partition the positive integers. The sequence d can be called the "anti-tribonacci sequence"; viz., if sequences a and b are defined as above, and c(n) is defined by c(n) = a(n) + b(n), then the resulting system of 3 complementary sequences gives c = A075326, the "anti-Fibonacci sequence." See A299409 for the "anti-tetranacci" sequences.

Examples

			n:   0    1    2    3    4    5    6    7    8    9
a:   1    4    8   11   14   18   21   24   28   31
b:   2    5    9   12   15   19   22   25   29   32
c:   3    7   10   13   17   20   23   26   30   33
d:   6   16   27   36   46   57   66   75   87   96
		

Crossrefs

Programs

  • Mathematica
    z = 400;
    mex[list_, start_] := (NestWhile[# + 1 &, start, MemberQ[list, #] &]);
    a = {1}; b = {2}; c = {3}; d = {}; AppendTo[d, Last[a] + Last[b] + Last[c]];
    Do[{AppendTo[a, mex[Flatten[{a, b, c, d}], 1]],
       AppendTo[b, mex[Flatten[{a, b, c, d}], 1]],
       AppendTo[c, mex[Flatten[{a, b, c, d}], 1]],
       AppendTo[d, Last[a] + Last[b] + Last[c]]}, {z}];
    Take[a, 100]  (* A297464 *)
    Take[b, 100]  (* A297465 *)
    Take[c, 100]  (* A297466 *)
    Take[d, 100]  (* A265389 *)

Formula

a(n) = a(n-1) + a(n-3) - a(n-4) (conjectured).
d(n) = A275389(n) for n >= 0.
Showing 1-2 of 2 results.