cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A275407 Let e_n(k)>=0 denote the exponent of prime(k) in the prime power representation of n. The sequence lists 1 followed by numbers n for which e_n(2*i-1)=e_n(2*i), for all i>=1.

Original entry on oeis.org

1, 6, 35, 36, 143, 210, 216, 323, 667, 858, 1147, 1225, 1260, 1296, 1763, 1938, 2491, 3599, 4002, 4757, 5005, 5148, 5767, 6882, 7350, 7387, 7560, 7776, 9797, 10578, 11021, 11305, 11628, 12317, 14946, 16637, 19043, 20449, 21594, 22499, 23345, 24012, 25591, 28542
Offset: 1

Views

Author

Vladimir Shevelev, Jul 26 2016

Keywords

Comments

There exists a permutation alpha of the sequence such that {alpha(a(n))} is a completely multiplicative function.
This sequence corresponds to the fixed points of A061898. - Rémy Sigrist, Feb 15 2023

Examples

			15 is not in the sequence, since 15 = 3*5 and the prime index of 5 is odd.
5148 is in the sequence, since 5148 = 2^2*3^2*11*13 and
(1) 3 is the next prime after 2,
(2) the exponents of 2 and 3 are equal,
(3) the prime index of 3 is even,
(4) 13 is the next prime after 11,
(5) the exponents of 11 and 13 are equal,
(6) the prime index of 13 is even.
		

Crossrefs

Programs

  • Mathematica
    inA275407Q:=If[EvenQ[Length[#]],Apply[And,Join[Map[#[[1]]+1==#[[2]]&&EvenQ[#[[2]]]&,PrimePi[#[[1]]]],Map[#[[1]]==#[[2]]&,#[[2]]]]]&[Map[Partition[#,2]&,Transpose[#]]],False]&[FactorInteger[#]]&;
    Join[{1},Select[Range[10000],inA275407Q]] (* Peter J. C. Moses, Jul 29 2016 *)
  • PARI
    isok(n) = {f = factor(n); nbpok = 0; for (k=1, #f~, ip = primepi(f[k, 1]); if ((ip % 2) && (kk = vecsearch(f[,1]~, prime(ip+1))) && (f[kk, 2] == f[k,2]), nbpok++;)); nbpok == #f~/2;} \\ Michel Marcus, Jul 27 2016
    
  • Sage
    def is_A275407(n):
        L = list(factor(n))
        if is_odd(len(L)): return False
        for i in range(0,len(L)//2+1,2):
            if L[i][1] != L[i+1][1]: return False
            if L[i][0] != previous_prime(L[i+1][0]): return False
            if is_even(len(prime_range(1, L[i+1][0]))): return False
        return True
    [n for n in (2..5000) if is_A275407(n)] # Peter Luschny, Jul 27 2016

Extensions

More terms from Peter J. C. Moses, Jul 26 2016