A275420 Triangle read by rows: T(n,k) = number of graphs with n nodes and k connected regular components.
1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 3, 2, 1, 1, 5, 5, 4, 2, 1, 1, 4, 9, 6, 4, 2, 1, 1, 17, 14, 12, 7, 4, 2, 1, 1, 22, 30, 19, 13, 7, 4, 2, 1, 1, 167, 56, 42, 22, 14, 7, 4, 2, 1, 1, 539, 224, 74, 47, 23, 14, 7, 4, 2, 1, 1, 18979, 785, 271, 87, 50, 24, 14, 7, 4, 2, 1, 1, 389436, 19783
Offset: 1
Examples
1 1 1 1 1 1 2 2 1 1 2 3 2 1 1 5 5 4 2 1 1 4 9 6 4 2 1 1 17 14 12 7 4 2 1 1 22 30 19 13 7 4 2 1 1 167 56 42 22 14 7 4 2 1 1 539 224 74 47 23 14 7 4 2 1 1 18979 785 271 87 50 24 14 7 4 2 1 1
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..300 (rows 1..24)
- Index entries for triangles generated by the Multiset Transformation
Formula
T(n,1) = A005177(n).
T(n,k) = Sum_{c_i*N_i=n,i=1..k} binomial(T(N_i,1)+c_i-1,c_i) for 1
G.f.: Product_{j>=1} (1-y*x^j)^(-A005177(j)). - Alois P. Heinz, Apr 13 2017
Extensions
Name clarified by Andrew Howroyd, May 20 2020
Comments