cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A275425 Number of set partitions of [n] such that seven is a multiple of each block size.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 9, 37, 121, 331, 793, 1717, 5149, 32176, 217361, 1186329, 5282785, 20004037, 66589681, 266164921, 2012163385, 18230119678, 137986473241, 849028203101, 4391743155801, 19722685412431, 98510163677641, 856572597342541, 9516244046786101
Offset: 0

Views

Author

Alois P. Heinz, Jul 27 2016

Keywords

Examples

			a(8) = 9: 1234567|8, 1234568|7, 1234578|6, 1234678|5, 1235678|4, 1245678|3, 1345678|2, 1|2345678, 1|2|3|4|5|6|7|8.
		

Crossrefs

Column k=7 of A275422.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, add(
          `if`(j>n, 0, a(n-j)*binomial(n-1, j-1)), j=[1, 7]))
        end:
    seq(a(n), n=0..30);
  • Mathematica
    a[n_] := a[n] = If[n == 0, 1, Sum[If[j > n, 0, a[n-j]*Binomial[n-1, j-1]], {j, {1, 7}}]];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, May 17 2018, translated from Maple *)
  • PARI
    a(n) = n!*sum(k=0, n\7, 1/7!^k*binomial(n-6*k, k)/(n-6*k)!); \\ Seiichi Manyama, Feb 26 2022
    
  • PARI
    a(n) = if(n<7, 1, a(n-1)+binomial(n-1, 6)*a(n-7)); \\ Seiichi Manyama, Feb 26 2022

Formula

E.g.f.: exp(x+x^7/7!).
From Seiichi Manyama, Feb 26 2022: (Start)
a(n) = n! * Sum_{k=0..floor(n/7)} (1/7!)^k * binomial(n-6*k,k)/(n-6*k)!.
a(n) = a(n-1) + binomial(n-1,6) * a(n-7) for n > 6. (End)