A275425 Number of set partitions of [n] such that seven is a multiple of each block size.
1, 1, 1, 1, 1, 1, 1, 2, 9, 37, 121, 331, 793, 1717, 5149, 32176, 217361, 1186329, 5282785, 20004037, 66589681, 266164921, 2012163385, 18230119678, 137986473241, 849028203101, 4391743155801, 19722685412431, 98510163677641, 856572597342541, 9516244046786101
Offset: 0
Keywords
Examples
a(8) = 9: 1234567|8, 1234568|7, 1234578|6, 1234678|5, 1235678|4, 1245678|3, 1345678|2, 1|2345678, 1|2|3|4|5|6|7|8.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..618
- Wikipedia, Partition of a set
Crossrefs
Column k=7 of A275422.
Programs
-
Maple
a:= proc(n) option remember; `if`(n=0, 1, add( `if`(j>n, 0, a(n-j)*binomial(n-1, j-1)), j=[1, 7])) end: seq(a(n), n=0..30);
-
Mathematica
a[n_] := a[n] = If[n == 0, 1, Sum[If[j > n, 0, a[n-j]*Binomial[n-1, j-1]], {j, {1, 7}}]]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, May 17 2018, translated from Maple *)
-
PARI
a(n) = n!*sum(k=0, n\7, 1/7!^k*binomial(n-6*k, k)/(n-6*k)!); \\ Seiichi Manyama, Feb 26 2022
-
PARI
a(n) = if(n<7, 1, a(n-1)+binomial(n-1, 6)*a(n-7)); \\ Seiichi Manyama, Feb 26 2022
Formula
E.g.f.: exp(x+x^7/7!).
From Seiichi Manyama, Feb 26 2022: (Start)
a(n) = n! * Sum_{k=0..floor(n/7)} (1/7!)^k * binomial(n-6*k,k)/(n-6*k)!.
a(n) = a(n-1) + binomial(n-1,6) * a(n-7) for n > 6. (End)