cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A275429 Number of set partitions of [n] such that n is a multiple of each block size.

Original entry on oeis.org

1, 1, 2, 2, 11, 2, 167, 2, 1500, 1206, 16175, 2, 3486584, 2, 3188421, 29226654, 772458367, 2, 130880325103, 2, 4173951684174, 623240762412, 644066092301, 2, 220076136813712815, 31580724696908, 538897996103277, 49207275464475052, 44147498142028751570, 2
Offset: 0

Views

Author

Alois P. Heinz, Jul 27 2016

Keywords

Examples

			a(4) = 11: 1234, 12|34, 12|3|4, 13|24, 13|2|4, 14|23, 1|23|4, 14|2|3, 1|24|3, 1|2|34, 1|2|3|4.
a(5) = 2: 12345, 1|2|3|4|5.
		

Crossrefs

Main diagonal of A275422.

Programs

  • Maple
    A:= proc(n, k) option remember; `if`(n=0, 1, add(
          `if`(j>n, 0, A(n-j, k)*binomial(n-1, j-1)), j=
          `if`(k=0, 1..n, numtheory[divisors](k))))
        end:
    a:= n-> A(n$2):
    seq(a(n), n=0..30);
  • Mathematica
    A[n_, k_] := A[n, k] = If[n == 0, 1, Sum[If[j > n, 0, A[n - j, k]* Binomial[n - 1, j - 1]], {j, If[k == 0, Range[n], Divisors[k]]}]];
    a[n_] := A[n, n];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, May 17 2018, translated from Maple *)

Formula

a(n) = n! * [x^n] exp(Sum_{d|n} x^d/d!) for n>0, a(0) = 1.
a(n) = A275422(n,n).
a(p) = 2 for p prime.