cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A275422 Number A(n,k) of set partitions of [n] such that k is a multiple of each block size; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 5, 1, 1, 2, 1, 15, 1, 1, 1, 4, 1, 52, 1, 1, 2, 2, 10, 1, 203, 1, 1, 1, 4, 5, 26, 1, 877, 1, 1, 2, 1, 11, 11, 76, 1, 4140, 1, 1, 1, 5, 1, 31, 31, 232, 1, 21147, 1, 1, 2, 1, 14, 2, 106, 106, 764, 1, 115975, 1, 1, 1, 4, 1, 46, 7, 372, 337, 2620, 1, 678570
Offset: 0

Views

Author

Alois P. Heinz, Jul 27 2016

Keywords

Examples

			A(5,3) = 11: 123|4|5, 124|3|5, 125|3|4, 134|2|5, 135|2|4, 1|234|5, 1|235|4, 145|2|3, 1|245|3, 1|2|345, 1|2|3|4|5.
A(4,4) = 11: 1234, 12|34, 12|3|4, 13|24, 13|2|4, 14|23, 1|23|4, 14|2|3, 1|24|3, 1|2|34, 1|2|3|4.
A(6,5) = 7: 12345|6, 12346|5, 12356|4, 12456|3, 13456|2, 1|23456, 1|2|3|4|5|6.
Square array A(n,k) begins:
:    1, 1,   1,   1,    1,  1,    1, 1,    1, ...
:    1, 1,   1,   1,    1,  1,    1, 1,    1, ...
:    2, 1,   2,   1,    2,  1,    2, 1,    2, ...
:    5, 1,   4,   2,    4,  1,    5, 1,    4, ...
:   15, 1,  10,   5,   11,  1,   14, 1,   11, ...
:   52, 1,  26,  11,   31,  2,   46, 1,   31, ...
:  203, 1,  76,  31,  106,  7,  167, 1,  106, ...
:  877, 1, 232, 106,  372, 22,  659, 2,  372, ...
: 4140, 1, 764, 337, 1499, 57, 2836, 9, 1500, ...
		

Crossrefs

Main diagonal gives A275429.

Programs

  • Maple
    A:= proc(n, k) option remember; `if`(n=0, 1, add(
          `if`(j>n, 0, A(n-j, k)*binomial(n-1, j-1)), j=
          `if`(k=0, 1..n, numtheory[divisors](k))))
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..14);
  • Mathematica
    A[n_, k_] := A[n, k] = If[n==0, 1, Sum[If[j>n, 0, A[n-j, k]*Binomial[n-1, j - 1]], {j, If[k==0, Range[n], Divisors[k]]}]]; Table[A[n, d-n], {d, 0, 14}, {n, 0, d}] // Flatten (* Jean-François Alcover, Feb 08 2017, translated from Maple *)

Formula

E.g.f. for column k>0: exp(Sum_{d|k} x^d/d!), for k=0: exp(exp(x)-1).

A335797 a(n) = n! * [x^n] exp(Sum_{k=1..n, gcd(n,k) = 1} x^k / k!).

Original entry on oeis.org

1, 1, 1, 4, 5, 51, 7, 876, 457, 7678, 5271, 678569, 10705, 27644436, 5060161, 133924576, 197920145, 82864869803, 173283535, 5832742205056, 98269310261, 34660429169122, 25313714237505, 44152005855084345, 13685698802401, 2410161938206898126, 129066382491033573
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 12 2020

Keywords

Comments

Number of set partitions of [n] into blocks that are relatively prime to n.

Crossrefs

Programs

  • Maple
    b:= proc(n, m) option remember; `if`(n=0, 1, add(`if`(
          igcd(j, m)=1, b(n-j, m), 0)*binomial(n-1, j-1), j=1..n))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..27);  # Alois P. Heinz, Oct 12 2020
  • Mathematica
    Table[n! SeriesCoefficient[Exp[Sum[Boole[GCD[n, k] == 1] x^k/k!, {k, 1, n}]], {x, 0, n}], {n, 0, 26}]

A332259 a(n) = n! * [x^n] 1 / (1 - Sum_{d|n} x^d / d!).

Original entry on oeis.org

1, 1, 3, 7, 67, 121, 4551, 5041, 405371, 888721, 65326213, 39916801, 27854708575, 6227020801, 5417436748153, 6968620334677, 2744261072866171, 355687428096001, 2984245819328278077, 121645100408832001, 1177257398964663961517, 545405274481512519361
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 08 2020

Keywords

Comments

Number of ordered set partitions of [n] such that n is a multiple of each block size.

Crossrefs

Programs

  • Mathematica
    Table[n! SeriesCoefficient[1/(1 - Sum[Boole[Mod[n, k] == 0] x^k/k!, {k, 1, n}]), {x, 0, n}], {n, 0, 22}]
  • PARI
    a(n) = {n! * polcoef(1/(1 - sumdiv(n, d, x^d/d!) + O(x*x^n)), n)} \\ Andrew Howroyd, Feb 08 2020
Showing 1-3 of 3 results.