A190865
E.g.f. exp(x+x^3/6).
Original entry on oeis.org
1, 1, 1, 2, 5, 11, 31, 106, 337, 1205, 5021, 20186, 86461, 417847, 1992355, 9860306, 53734241, 292816841, 1633818457, 9855157330, 59926837141, 370352343971, 2439935383271, 16283034762842, 109982177787505, 783404343570301, 5668314772422901, 41412522553362026
Offset: 0
a(0) = 1 because (vacuously) all sizes of the blocks in the unique set partition of {} divide 3.
a(4) = 5 because there are 5 such set partitions of {1,2,3,4}: ({1},{2,3,4}) ({2},{1,3,4}) ({3},{1,2,4}) ({4},{1,2,3}) ({1},{2},{3},{4}).
-
a:= proc(n) option remember; `if`(n=0, 1, add(
`if`(j>n, 0, a(n-j)*binomial(n-1, j-1)), j=[1, 3]))
end:
seq(a(n), n=0..30); # Alois P. Heinz, Jul 27 2016
-
Range[0, 25]! CoefficientList[Series[Exp[x + x^3/6] , {x, 0, 25}], x]
-
a(n):=n!*sum(1/((k)!*(n-3*k)!*6^(k)),k,0,n/3);
A275423
Number of set partitions of [n] such that five is a multiple of each block size.
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 7, 22, 57, 127, 379, 1849, 9109, 37324, 128129, 507508, 3031393, 19609773, 108440893, 500515633, 2467616641, 17154715726, 134519207131, 927764339426, 5359830269641, 31580724696907, 248587878630807, 2259650025239257, 18541914182165557
Offset: 0
a(6) = 7: 12345|6, 12346|5, 12356|4, 12456|3, 13456|2, 1|23456, 1|2|3|4|5|6.
-
a:= proc(n) option remember; `if`(n=0, 1, add(
`if`(j>n, 0, a(n-j)*binomial(n-1, j-1)), j=[1, 5]))
end:
seq(a(n), n=0..30);
# second Maple program:
seq(simplify(hypergeom([-n/5, (1-n)/5, (2-n)/5, (3-n)/5, (4-n)/5], [], -625/24)), n = 0..28); # Karol A. Penson, Sep 14 2023.
-
a[n_] := a[n] = If[n == 0, 1, Sum[If[j > n, 0, a[n-j]*Binomial[n-1, j-1]], {j, {1, 5}}]];
Table[a[n], {n, 0, 30}] (* Jean-François Alcover, May 17 2018, translated from Maple *)
-
a(n) = n!*sum(k=0, n\5, 1/5!^k*binomial(n-4*k, k)/(n-4*k)!); \\ Seiichi Manyama, Feb 26 2022
-
a(n) = if(n<5, 1, a(n-1)+binomial(n-1, 4)*a(n-5)); \\ Seiichi Manyama, Feb 26 2022
A275429
Number of set partitions of [n] such that n is a multiple of each block size.
Original entry on oeis.org
1, 1, 2, 2, 11, 2, 167, 2, 1500, 1206, 16175, 2, 3486584, 2, 3188421, 29226654, 772458367, 2, 130880325103, 2, 4173951684174, 623240762412, 644066092301, 2, 220076136813712815, 31580724696908, 538897996103277, 49207275464475052, 44147498142028751570, 2
Offset: 0
a(4) = 11: 1234, 12|34, 12|3|4, 13|24, 13|2|4, 14|23, 1|23|4, 14|2|3, 1|24|3, 1|2|34, 1|2|3|4.
a(5) = 2: 12345, 1|2|3|4|5.
-
A:= proc(n, k) option remember; `if`(n=0, 1, add(
`if`(j>n, 0, A(n-j, k)*binomial(n-1, j-1)), j=
`if`(k=0, 1..n, numtheory[divisors](k))))
end:
a:= n-> A(n$2):
seq(a(n), n=0..30);
-
A[n_, k_] := A[n, k] = If[n == 0, 1, Sum[If[j > n, 0, A[n - j, k]* Binomial[n - 1, j - 1]], {j, If[k == 0, Range[n], Divisors[k]]}]];
a[n_] := A[n, n];
Table[a[n], {n, 0, 30}] (* Jean-François Alcover, May 17 2018, translated from Maple *)
A190452
E.g.f. exp(x+x^2/2+x^4/24).
Original entry on oeis.org
1, 1, 2, 4, 11, 31, 106, 372, 1499, 6211, 28606, 135356, 697357, 3688049, 20935006, 121837276, 753159801, 4767863657, 31807384354, 217048147396, 1551200297291, 11327527814191, 86206555248122, 669666314150164, 5399592811359331, 44398500646885851
Offset: 0
-
With[{nn=30},CoefficientList[Series[Exp[x+x^2/2+x^4/24],{x,0,nn}], x]Range[0,nn]!] (* Harvey P. Dale, Jun 21 2012 *)
-
a(n):=n!*sum(sum(binomial(j,n-4*k+3*j)*12^(j-k)*binomial(k,j)*2^(-n+3*k-2*j),j,floor((4*k-n)/3),floor((4*k-n)/2))/k!,k,1,n);
-
N=33; x='x+O('x^N);
egf=exp(x+x^2/2+x^4/4!);
Vec(serlaplace(egf))
/* Joerg Arndt, Sep 15 2012 */
A275425
Number of set partitions of [n] such that seven is a multiple of each block size.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 2, 9, 37, 121, 331, 793, 1717, 5149, 32176, 217361, 1186329, 5282785, 20004037, 66589681, 266164921, 2012163385, 18230119678, 137986473241, 849028203101, 4391743155801, 19722685412431, 98510163677641, 856572597342541, 9516244046786101
Offset: 0
a(8) = 9: 1234567|8, 1234568|7, 1234578|6, 1234678|5, 1235678|4, 1245678|3, 1345678|2, 1|2345678, 1|2|3|4|5|6|7|8.
-
a:= proc(n) option remember; `if`(n=0, 1, add(
`if`(j>n, 0, a(n-j)*binomial(n-1, j-1)), j=[1, 7]))
end:
seq(a(n), n=0..30);
-
a[n_] := a[n] = If[n == 0, 1, Sum[If[j > n, 0, a[n-j]*Binomial[n-1, j-1]], {j, {1, 7}}]];
Table[a[n], {n, 0, 30}] (* Jean-François Alcover, May 17 2018, translated from Maple *)
-
a(n) = n!*sum(k=0, n\7, 1/7!^k*binomial(n-6*k, k)/(n-6*k)!); \\ Seiichi Manyama, Feb 26 2022
-
a(n) = if(n<7, 1, a(n-1)+binomial(n-1, 6)*a(n-7)); \\ Seiichi Manyama, Feb 26 2022
A275424
Number of set partitions of [n] such that six is a multiple of each block size.
Original entry on oeis.org
1, 1, 2, 5, 14, 46, 167, 659, 2836, 13064, 64076, 333928, 1834438, 10592518, 64136528, 405519766, 2672202304, 18315499424, 130245129112, 959527765480, 7311915167696, 57536223460640, 466963917417152, 3904133599120624, 33583586584746728, 296948602314737576
Offset: 0
-
a:= proc(n) option remember; `if`(n=0, 1, add(
`if`(j>n, 0, a(n-j)*binomial(n-1, j-1)), j=[1, 2, 3, 6]))
end:
seq(a(n), n=0..30);
-
a[n_] := a[n] = If[n == 0, 1, Sum[If[j > n, 0, a[n-j]*Binomial[n-1, j-1]], {j, {1, 2, 3, 6}}]];
Table[a[n], {n, 0, 30}] (* Jean-François Alcover, May 17 2018, translated from Maple *)
A275426
Number of set partitions of [n] such that eight is a multiple of each block size.
Original entry on oeis.org
1, 1, 2, 4, 11, 31, 106, 372, 1500, 6220, 28696, 136016, 702802, 3727946, 21253324, 124231096, 772458366, 4918962462, 33061094812, 227303566648, 1639389311906, 12082068225466, 92951836390172, 729991698024568, 5960615982017512, 49636995406898376
Offset: 0
-
a:= proc(n) option remember; `if`(n=0, 1, add(
`if`(j>n, 0, a(n-j)*binomial(n-1, j-1)), j=[1, 2, 4, 8]))
end:
seq(a(n), n=0..30);
-
a[n_] := a[n] = If[n == 0, 1, Sum[If[j > n, 0, a[n-j]*Binomial[n-1, j-1]], {j, {1, 2, 4, 8}}]];
Table[a[n], {n, 0, 30}] (* Jean-François Alcover, May 17 2018, translated from Maple *)
A275427
Number of set partitions of [n] such that nine is a multiple of each block size.
Original entry on oeis.org
1, 1, 1, 2, 5, 11, 31, 106, 337, 1206, 5031, 20241, 86901, 421422, 2014377, 10015461, 54946881, 301009311, 1692429867, 10319449158, 63321896601, 395830490301, 2648669976261, 17920165424382, 122976000215289, 894420751179276, 6596034524038701, 49207275464475051
Offset: 0
-
a:= proc(n) option remember; `if`(n=0, 1, add(
`if`(j>n, 0, a(n-j)*binomial(n-1, j-1)), j=[1, 3, 9]))
end:
seq(a(n), n=0..30);
-
a[n_] := a[n] = If[n == 0, 1, Sum[If[j > n, 0, a[n-j]*Binomial[n-1, j-1]], {j, {1, 3, 9}}]];
Table[a[n], {n, 0, 30}] (* Jean-François Alcover, May 17 2018, translated from Maple *)
A275428
Number of set partitions of [n] such that ten is a multiple of each block size.
Original entry on oeis.org
1, 1, 2, 4, 10, 27, 82, 274, 988, 3880, 16175, 72205, 340660, 1697060, 8906990, 48911059, 281486144, 1687198848, 10535484376, 68349098640, 459596780618, 3202506672898, 23052054364956, 171418420964352, 1314125642973640, 10375794542251692, 84315714183790792
Offset: 0
-
a:= proc(n) option remember; `if`(n=0, 1, add(
`if`(j>n, 0, a(n-j)*binomial(n-1, j-1)), j=[1, 2, 5, 10]))
end:
seq(a(n), n=0..30);
-
a[n_] := a[n] = If[n == 0, 1, Sum[If[j > n, 0, a[n-j]*Binomial[n-1, j-1]], {j, {1, 2, 5, 10}}]];
Table[a[n], {n, 0, 30}] (* Jean-François Alcover, May 17 2018, translated from Maple *)
Showing 1-9 of 9 results.
Comments