cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A190865 E.g.f. exp(x+x^3/6).

Original entry on oeis.org

1, 1, 1, 2, 5, 11, 31, 106, 337, 1205, 5021, 20186, 86461, 417847, 1992355, 9860306, 53734241, 292816841, 1633818457, 9855157330, 59926837141, 370352343971, 2439935383271, 16283034762842, 109982177787505, 783404343570301, 5668314772422901, 41412522553362026
Offset: 0

Views

Author

Vladimir Kruchinin, May 22 2011

Keywords

Comments

a(n) is the number of set partitions of {1,2,...,n} such that the size of each block divides 3. - Geoffrey Critzer, Sep 23 2011

Examples

			a(0) = 1 because (vacuously) all sizes of the blocks in the unique set partition of {} divide 3.
a(4) = 5 because there are 5 such set partitions of {1,2,3,4}: ({1},{2,3,4}) ({2},{1,3,4}) ({3},{1,2,4}) ({4},{1,2,3}) ({1},{2},{3},{4}).
		

Crossrefs

Cf. A001470.
Column k=3 of A275422.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, add(
          `if`(j>n, 0, a(n-j)*binomial(n-1, j-1)), j=[1, 3]))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Jul 27 2016
  • Mathematica
    Range[0, 25]! CoefficientList[Series[Exp[x + x^3/6] , {x, 0, 25}], x]
  • Maxima
    a(n):=n!*sum(1/((k)!*(n-3*k)!*6^(k)),k,0,n/3);

Formula

a(n) = n!*sum(k=0..n/3, 1/((k)!*(n-3*k)!*6^(k))), n>0, a(0)=1.
E.g.f.: E(0)/2, where E(k)= 1 + 1/(1 - x*(6+x^2)/(x*(6+x^2)+ 6*(k+1)/E(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 01 2013
Recurrence: 2*a(n) = 2*a(n-1) + (n-2)*(n-1)*a(n-3). - Vaclav Kotesovec, Jun 27 2013
a(n) ~ n^(2*n/3) * exp(-2*n/3+(2*n)^(1/3)) / (sqrt(3)*2^(n/3)) * (1 - 2^(2/3)/(6*n^(1/3)) + 13*2^(1/3)/(36*n^(2/3))). - Vaclav Kotesovec, Jun 27 2013
a(n) = hypergeom([-n/3, (1 - n)/3, (2 - n)/3], [], -9/2). - Peter Luschny, Jun 04 2021

A275423 Number of set partitions of [n] such that five is a multiple of each block size.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 7, 22, 57, 127, 379, 1849, 9109, 37324, 128129, 507508, 3031393, 19609773, 108440893, 500515633, 2467616641, 17154715726, 134519207131, 927764339426, 5359830269641, 31580724696907, 248587878630807, 2259650025239257, 18541914182165557
Offset: 0

Views

Author

Alois P. Heinz, Jul 27 2016

Keywords

Examples

			a(6) = 7: 12345|6, 12346|5, 12356|4, 12456|3, 13456|2, 1|23456, 1|2|3|4|5|6.
		

Crossrefs

Column k=5 of A275422.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, add(
          `if`(j>n, 0, a(n-j)*binomial(n-1, j-1)), j=[1, 5]))
        end:
    seq(a(n), n=0..30);
    # second Maple program:
    seq(simplify(hypergeom([-n/5, (1-n)/5, (2-n)/5, (3-n)/5, (4-n)/5], [], -625/24)), n = 0..28); # Karol A. Penson, Sep 14 2023.
  • Mathematica
    a[n_] := a[n] = If[n == 0, 1, Sum[If[j > n, 0, a[n-j]*Binomial[n-1, j-1]], {j, {1, 5}}]];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, May 17 2018, translated from Maple *)
  • PARI
    a(n) = n!*sum(k=0, n\5, 1/5!^k*binomial(n-4*k, k)/(n-4*k)!); \\ Seiichi Manyama, Feb 26 2022
    
  • PARI
    a(n) = if(n<5, 1, a(n-1)+binomial(n-1, 4)*a(n-5)); \\ Seiichi Manyama, Feb 26 2022

Formula

E.g.f.: exp(x+x^5/5!).
From Seiichi Manyama, Feb 26 2022: (Start)
a(n) = n! * Sum_{k=0..floor(n/5)} (1/5!)^k * binomial(n-4*k,k)/(n-4*k)!.
a(n) = a(n-1) + binomial(n-1,4) * a(n-5) for n > 4. (End)
a(n) = hypergeom([-n/5,(1-n)/5,(2-n)/5,(3-n)/5,(4-n)/5],[],-625/24). - Karol A. Penson, Sep 14 2023.

A275429 Number of set partitions of [n] such that n is a multiple of each block size.

Original entry on oeis.org

1, 1, 2, 2, 11, 2, 167, 2, 1500, 1206, 16175, 2, 3486584, 2, 3188421, 29226654, 772458367, 2, 130880325103, 2, 4173951684174, 623240762412, 644066092301, 2, 220076136813712815, 31580724696908, 538897996103277, 49207275464475052, 44147498142028751570, 2
Offset: 0

Views

Author

Alois P. Heinz, Jul 27 2016

Keywords

Examples

			a(4) = 11: 1234, 12|34, 12|3|4, 13|24, 13|2|4, 14|23, 1|23|4, 14|2|3, 1|24|3, 1|2|34, 1|2|3|4.
a(5) = 2: 12345, 1|2|3|4|5.
		

Crossrefs

Main diagonal of A275422.

Programs

  • Maple
    A:= proc(n, k) option remember; `if`(n=0, 1, add(
          `if`(j>n, 0, A(n-j, k)*binomial(n-1, j-1)), j=
          `if`(k=0, 1..n, numtheory[divisors](k))))
        end:
    a:= n-> A(n$2):
    seq(a(n), n=0..30);
  • Mathematica
    A[n_, k_] := A[n, k] = If[n == 0, 1, Sum[If[j > n, 0, A[n - j, k]* Binomial[n - 1, j - 1]], {j, If[k == 0, Range[n], Divisors[k]]}]];
    a[n_] := A[n, n];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, May 17 2018, translated from Maple *)

Formula

a(n) = n! * [x^n] exp(Sum_{d|n} x^d/d!) for n>0, a(0) = 1.
a(n) = A275422(n,n).
a(p) = 2 for p prime.

A190452 E.g.f. exp(x+x^2/2+x^4/24).

Original entry on oeis.org

1, 1, 2, 4, 11, 31, 106, 372, 1499, 6211, 28606, 135356, 697357, 3688049, 20935006, 121837276, 753159801, 4767863657, 31807384354, 217048147396, 1551200297291, 11327527814191, 86206555248122, 669666314150164, 5399592811359331, 44398500646885851
Offset: 0

Views

Author

Vladimir Kruchinin, May 24 2011

Keywords

Crossrefs

Column k=4 of A275422.

Programs

  • Mathematica
    With[{nn=30},CoefficientList[Series[Exp[x+x^2/2+x^4/24],{x,0,nn}], x]Range[0,nn]!] (* Harvey P. Dale, Jun 21 2012 *)
  • Maxima
    a(n):=n!*sum(sum(binomial(j,n-4*k+3*j)*12^(j-k)*binomial(k,j)*2^(-n+3*k-2*j),j,floor((4*k-n)/3),floor((4*k-n)/2))/k!,k,1,n);
    
  • PARI
    N=33;  x='x+O('x^N);
    egf=exp(x+x^2/2+x^4/4!);
    Vec(serlaplace(egf))
    /* Joerg Arndt, Sep 15 2012 */

Formula

E.g.f.: exp(x+x^2/2+x^4/24).
a(n) = n!*sum(k=1..n, sum(j=floor((4*k-n)/3)..floor((4*k-n)/2), binomial(j,n-4*k+3*j)*12^(j-k)*binomial(k,j)*2^(-n+3*k-2*j))/k!), n>0, a(0)=1.
Recurrence: 6*a(n) = 6*a(n-1) + 6*(n-1)*a(n-2) + (n-3)*(n-2)*(n-1)*a(n-4). - Vaclav Kotesovec, Oct 09 2013
a(n) ~ 1/2*exp((6*n)^(1/4) + sqrt(6*n)/2 - 3*n/4 - 3/4) * n^(3*n/4) * 6^(-n/4) * (1 + 3^(5/4)/(16*(2*n)^(3/4)) + 7*sqrt(3/2)/(8*sqrt(n)) - 3^(3/4)/(2*(2*n)^(1/4))). - Vaclav Kotesovec, Oct 09 2013

Extensions

More terms from Harvey P. Dale, Jun 21 2012

A275425 Number of set partitions of [n] such that seven is a multiple of each block size.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 9, 37, 121, 331, 793, 1717, 5149, 32176, 217361, 1186329, 5282785, 20004037, 66589681, 266164921, 2012163385, 18230119678, 137986473241, 849028203101, 4391743155801, 19722685412431, 98510163677641, 856572597342541, 9516244046786101
Offset: 0

Views

Author

Alois P. Heinz, Jul 27 2016

Keywords

Examples

			a(8) = 9: 1234567|8, 1234568|7, 1234578|6, 1234678|5, 1235678|4, 1245678|3, 1345678|2, 1|2345678, 1|2|3|4|5|6|7|8.
		

Crossrefs

Column k=7 of A275422.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, add(
          `if`(j>n, 0, a(n-j)*binomial(n-1, j-1)), j=[1, 7]))
        end:
    seq(a(n), n=0..30);
  • Mathematica
    a[n_] := a[n] = If[n == 0, 1, Sum[If[j > n, 0, a[n-j]*Binomial[n-1, j-1]], {j, {1, 7}}]];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, May 17 2018, translated from Maple *)
  • PARI
    a(n) = n!*sum(k=0, n\7, 1/7!^k*binomial(n-6*k, k)/(n-6*k)!); \\ Seiichi Manyama, Feb 26 2022
    
  • PARI
    a(n) = if(n<7, 1, a(n-1)+binomial(n-1, 6)*a(n-7)); \\ Seiichi Manyama, Feb 26 2022

Formula

E.g.f.: exp(x+x^7/7!).
From Seiichi Manyama, Feb 26 2022: (Start)
a(n) = n! * Sum_{k=0..floor(n/7)} (1/7!)^k * binomial(n-6*k,k)/(n-6*k)!.
a(n) = a(n-1) + binomial(n-1,6) * a(n-7) for n > 6. (End)

A275424 Number of set partitions of [n] such that six is a multiple of each block size.

Original entry on oeis.org

1, 1, 2, 5, 14, 46, 167, 659, 2836, 13064, 64076, 333928, 1834438, 10592518, 64136528, 405519766, 2672202304, 18315499424, 130245129112, 959527765480, 7311915167696, 57536223460640, 466963917417152, 3904133599120624, 33583586584746728, 296948602314737576
Offset: 0

Views

Author

Alois P. Heinz, Jul 27 2016

Keywords

Crossrefs

Column k=6 of A275422.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, add(
          `if`(j>n, 0, a(n-j)*binomial(n-1, j-1)), j=[1, 2, 3, 6]))
        end:
    seq(a(n), n=0..30);
  • Mathematica
    a[n_] := a[n] = If[n == 0, 1, Sum[If[j > n, 0, a[n-j]*Binomial[n-1, j-1]], {j, {1, 2, 3, 6}}]];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, May 17 2018, translated from Maple *)

Formula

E.g.f.: exp(x+x^2/2+x^3/6+x^6/6!).

A275426 Number of set partitions of [n] such that eight is a multiple of each block size.

Original entry on oeis.org

1, 1, 2, 4, 11, 31, 106, 372, 1500, 6220, 28696, 136016, 702802, 3727946, 21253324, 124231096, 772458366, 4918962462, 33061094812, 227303566648, 1639389311906, 12082068225466, 92951836390172, 729991698024568, 5960615982017512, 49636995406898376
Offset: 0

Views

Author

Alois P. Heinz, Jul 27 2016

Keywords

Crossrefs

Column k=8 of A275422.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, add(
          `if`(j>n, 0, a(n-j)*binomial(n-1, j-1)), j=[1, 2, 4, 8]))
        end:
    seq(a(n), n=0..30);
  • Mathematica
    a[n_] := a[n] = If[n == 0, 1, Sum[If[j > n, 0, a[n-j]*Binomial[n-1, j-1]], {j, {1, 2, 4, 8}}]];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, May 17 2018, translated from Maple *)

Formula

E.g.f.: exp(x+x^2/2+x^4/24+x^8/8!).

A275427 Number of set partitions of [n] such that nine is a multiple of each block size.

Original entry on oeis.org

1, 1, 1, 2, 5, 11, 31, 106, 337, 1206, 5031, 20241, 86901, 421422, 2014377, 10015461, 54946881, 301009311, 1692429867, 10319449158, 63321896601, 395830490301, 2648669976261, 17920165424382, 122976000215289, 894420751179276, 6596034524038701, 49207275464475051
Offset: 0

Views

Author

Alois P. Heinz, Jul 27 2016

Keywords

Crossrefs

Column k=9 of A275422.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, add(
          `if`(j>n, 0, a(n-j)*binomial(n-1, j-1)), j=[1, 3, 9]))
        end:
    seq(a(n), n=0..30);
  • Mathematica
    a[n_] := a[n] = If[n == 0, 1, Sum[If[j > n, 0, a[n-j]*Binomial[n-1, j-1]], {j, {1, 3, 9}}]];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, May 17 2018, translated from Maple *)

Formula

E.g.f.: exp(x+x^3/6+x^9/9!).

A275428 Number of set partitions of [n] such that ten is a multiple of each block size.

Original entry on oeis.org

1, 1, 2, 4, 10, 27, 82, 274, 988, 3880, 16175, 72205, 340660, 1697060, 8906990, 48911059, 281486144, 1687198848, 10535484376, 68349098640, 459596780618, 3202506672898, 23052054364956, 171418420964352, 1314125642973640, 10375794542251692, 84315714183790792
Offset: 0

Views

Author

Alois P. Heinz, Jul 27 2016

Keywords

Crossrefs

Column k=10 of A275422.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, add(
          `if`(j>n, 0, a(n-j)*binomial(n-1, j-1)), j=[1, 2, 5, 10]))
        end:
    seq(a(n), n=0..30);
  • Mathematica
    a[n_] := a[n] = If[n == 0, 1, Sum[If[j > n, 0, a[n-j]*Binomial[n-1, j-1]], {j, {1, 2, 5, 10}}]];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, May 17 2018, translated from Maple *)

Formula

E.g.f.: exp(x+x^2/2+x^5/5!+x^10/10!).
Showing 1-9 of 9 results.