cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A275422 Number A(n,k) of set partitions of [n] such that k is a multiple of each block size; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 5, 1, 1, 2, 1, 15, 1, 1, 1, 4, 1, 52, 1, 1, 2, 2, 10, 1, 203, 1, 1, 1, 4, 5, 26, 1, 877, 1, 1, 2, 1, 11, 11, 76, 1, 4140, 1, 1, 1, 5, 1, 31, 31, 232, 1, 21147, 1, 1, 2, 1, 14, 2, 106, 106, 764, 1, 115975, 1, 1, 1, 4, 1, 46, 7, 372, 337, 2620, 1, 678570
Offset: 0

Views

Author

Alois P. Heinz, Jul 27 2016

Keywords

Examples

			A(5,3) = 11: 123|4|5, 124|3|5, 125|3|4, 134|2|5, 135|2|4, 1|234|5, 1|235|4, 145|2|3, 1|245|3, 1|2|345, 1|2|3|4|5.
A(4,4) = 11: 1234, 12|34, 12|3|4, 13|24, 13|2|4, 14|23, 1|23|4, 14|2|3, 1|24|3, 1|2|34, 1|2|3|4.
A(6,5) = 7: 12345|6, 12346|5, 12356|4, 12456|3, 13456|2, 1|23456, 1|2|3|4|5|6.
Square array A(n,k) begins:
:    1, 1,   1,   1,    1,  1,    1, 1,    1, ...
:    1, 1,   1,   1,    1,  1,    1, 1,    1, ...
:    2, 1,   2,   1,    2,  1,    2, 1,    2, ...
:    5, 1,   4,   2,    4,  1,    5, 1,    4, ...
:   15, 1,  10,   5,   11,  1,   14, 1,   11, ...
:   52, 1,  26,  11,   31,  2,   46, 1,   31, ...
:  203, 1,  76,  31,  106,  7,  167, 1,  106, ...
:  877, 1, 232, 106,  372, 22,  659, 2,  372, ...
: 4140, 1, 764, 337, 1499, 57, 2836, 9, 1500, ...
		

Crossrefs

Main diagonal gives A275429.

Programs

  • Maple
    A:= proc(n, k) option remember; `if`(n=0, 1, add(
          `if`(j>n, 0, A(n-j, k)*binomial(n-1, j-1)), j=
          `if`(k=0, 1..n, numtheory[divisors](k))))
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..14);
  • Mathematica
    A[n_, k_] := A[n, k] = If[n==0, 1, Sum[If[j>n, 0, A[n-j, k]*Binomial[n-1, j - 1]], {j, If[k==0, Range[n], Divisors[k]]}]]; Table[A[n, d-n], {d, 0, 14}, {n, 0, d}] // Flatten (* Jean-François Alcover, Feb 08 2017, translated from Maple *)

Formula

E.g.f. for column k>0: exp(Sum_{d|k} x^d/d!), for k=0: exp(exp(x)-1).

A323293 Number of 3-uniform hypergraphs on n labeled vertices where no two edges have two vertices in common.

Original entry on oeis.org

1, 1, 1, 2, 5, 26, 271, 5596, 231577, 21286940, 4392750641, 2100400533176
Offset: 0

Views

Author

Gus Wiseman, Jan 10 2019

Keywords

Examples

			The a(5) = 26 hypergraphs:
  {}
  {{1,2,3}}
  {{1,2,4}}
  {{1,2,5}}
  {{1,3,4}}
  {{1,3,5}}
  {{1,4,5}}
  {{2,3,4}}
  {{2,3,5}}
  {{2,4,5}}
  {{3,4,5}}
  {{1,2,3},{1,4,5}}
  {{1,2,3},{2,4,5}}
  {{1,2,3},{3,4,5}}
  {{1,2,4},{1,3,5}}
  {{1,2,4},{2,3,5}}
  {{1,2,4},{3,4,5}}
  {{1,2,5},{1,3,4}}
  {{1,2,5},{2,3,4}}
  {{1,2,5},{3,4,5}}
  {{1,3,4},{2,3,5}}
  {{1,3,4},{2,4,5}}
  {{1,3,5},{2,3,4}}
  {{1,3,5},{2,4,5}}
  {{1,4,5},{2,3,4}}
  {{1,4,5},{2,3,5}}
Non-isomorphic representatives of the 6 unlabeled 3-uniform hypertrees spanning 6 vertices where no two edges have two vertices in common, and their multiplicities in the labeled case which add up to a(6) = 271:
    1 X {}
   20 X {{1,2,3}}
   90 X {{1,2,5},{3,4,5}}
   10 X {{1,2,3},{4,5,6}}
  120 X {{1,3,5},{2,3,6},{4,5,6}}
   30 X {{1,2,4},{1,3,5},{2,3,6},{4,5,6}}
		

Crossrefs

Programs

  • Mathematica
    stableSets[u_,Q_]:=If[Length[u]===0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r===w||Q[r,w]||Q[w,r]],Q]]]];
    Table[Length[stableSets[Subsets[Range[n],{3}],Length[Intersection[#1,#2]]>1&]],{n,8}]

Extensions

a(9) from Andrew Howroyd, Aug 14 2019
a(10) and a(11) (using A287232) from Joerg Arndt, Oct 12 2023

A362043 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = n! * Sum_{j=0..floor(n/3)} (k/6)^j * binomial(n-2*j,j)/(n-2*j)!.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 5, 1, 1, 1, 1, 4, 9, 11, 1, 1, 1, 1, 5, 13, 21, 31, 1, 1, 1, 1, 6, 17, 31, 81, 106, 1, 1, 1, 1, 7, 21, 41, 151, 351, 337, 1, 1, 1, 1, 8, 25, 51, 241, 736, 1233, 1205, 1, 1, 1, 1, 9, 29, 61, 351, 1261, 2689, 5769, 5021, 1
Offset: 0

Views

Author

Seiichi Manyama, Apr 15 2023

Keywords

Examples

			Square array begins:
  1,  1,  1,   1,   1,   1,   1, ...
  1,  1,  1,   1,   1,   1,   1, ...
  1,  1,  1,   1,   1,   1,   1, ...
  1,  2,  3,   4,   5,   6,   7, ...
  1,  5,  9,  13,  17,  21,  25, ...
  1, 11, 21,  31,  41,  51,  61, ...
  1, 31, 81, 151, 241, 351, 481, ...
		

Crossrefs

Columns k=0..2 give A000012, A190865, A001470.
Main diagonal gives A362173.
T(n,2*n) gives A362300.
T(n,6*n) gives A362301.

Programs

  • PARI
    T(n, k) = n!*sum(j=0, n\3, (k/6)^j/(j!*(n-3*j)!));

Formula

E.g.f. of column k: exp(x + k*x^3/6).
T(n,k) = T(n-1,k) + k * binomial(n-1,2) * T(n-3,k) for n > 2.
T(n,k) = n! * Sum_{j=0..floor(n/3)} (k/6)^j / (j! * (n-3*j)!).

A323296 Number of 3-uniform hypergraphs spanning n labeled vertices where no two edges have exactly one vertex in common.

Original entry on oeis.org

1, 0, 0, 1, 11, 10, 25, 406, 4823, 15436, 72915, 895180, 11320441, 71777498, 519354927, 6155284240, 82292879425, 788821735656, 7772567489083, 98329764933354, 1400924444610675, 17424772471470490, 216091776292721021, 3035845122991962688, 46700545575567202903
Offset: 0

Views

Author

Gus Wiseman, Jan 11 2019

Keywords

Comments

The only way to meet the requirements is to cover the vertices with zero or more disconnected 3-uniform hypergraphs with each edge having exactly two vertices in common (A323294). - Andrew Howroyd, Aug 18 2019

Examples

			The a(4) = 11:
  {{1,2,3},{1,2,4}}
  {{1,2,3},{1,3,4}}
  {{1,2,3},{2,3,4}}
  {{1,2,4},{1,3,4}}
  {{1,2,4},{2,3,4}}
  {{1,3,4},{2,3,4}}
  {{1,2,3},{1,2,4},{1,3,4}}
  {{1,2,3},{1,2,4},{2,3,4}}
  {{1,2,3},{1,3,4},{2,3,4}}
  {{1,2,4},{1,3,4},{2,3,4}}
  {{1,2,3},{1,2,4},{1,3,4},{2,3,4}}
The following are non-isomorphic representatives of the 3 unlabeled 3-uniform hypergraphs spanning 7 vertices with no two edges having exactly one vertex in common, and their multiplicities in the labeled case, which add up to a(7) = 406.
  210 X {{1,2,3},{4,6,7},{5,6,7}}
  140 X {{1,2,3},{4,5,7},{4,6,7},{5,6,7}}
   21 X {{1,6,7},{2,6,7},{3,6,7},{4,6,7},{5,6,7}}
   35 X {{1,2,3},{4,5,6},{4,5,7},{4,6,7},{5,6,7}}
		

Crossrefs

Programs

  • Maple
    b:= n-> `if`(n<5, (n-2)*(2*n^2-6*n+3)/6, n/2)*(n-1):
    a:= proc(n) option remember; `if`(n=0, 1, add(
          binomial(n-1, k-1)*b(k)*a(n-k), k=1..n))
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Aug 18 2019
  • Mathematica
    stableSets[u_,Q_]:=If[Length[u]===0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r===w||Q[r,w]||Q[w,r]],Q]]]];
    Table[Length[Select[stableSets[Subsets[Range[n],{3}],Length[Intersection[#1,#2]]==1&],Union@@#==Range[n]&]],{n,8}]
  • PARI
    seq(n)={Vec(serlaplace(exp(-x^2/2 - x^3/3 + 5*x^4/24 + x^2*exp(x + O(x^(n-1)))/2)))} \\ Andrew Howroyd, Aug 18 2019

Formula

From Andrew Howroyd, Aug 18 2019: (Start)
Exponential transform of A323294.
E.g.f.: exp(-x^2/2 - x^3/3 + 5*x^4/24 + x^2*exp(x)/2). (End)

Extensions

a(11) from Alois P. Heinz, Aug 12 2019
Terms a(12) and beyond from Andrew Howroyd, Aug 18 2019

A323299 Number of 3-uniform hypergraphs on n labeled vertices where every two edges have exactly one vertex in common.

Original entry on oeis.org

1, 1, 1, 2, 5, 26, 261, 3216, 19617, 80860, 262651, 737716, 1920821, 5013152, 14277485, 47610876, 186355041, 820625616, 3869589607, 19039193980, 96332399701, 499138921736, 2639262062801, 14234781051932, 78188865206145, 437305612997376, 2487692697142251
Offset: 0

Views

Author

Gus Wiseman, Jan 11 2019

Keywords

Examples

			The a(5) = 26 hypergraphs:
  {}
  {{1,2,3}}
  {{1,2,4}}
  {{1,2,5}}
  {{1,3,4}}
  {{1,3,5}}
  {{1,4,5}}
  {{2,3,4}}
  {{2,3,5}}
  {{2,4,5}}
  {{3,4,5}}
  {{1,2,3},{1,4,5}}
  {{1,2,3},{2,4,5}}
  {{1,2,3},{3,4,5}}
  {{1,2,4},{1,3,5}}
  {{1,2,4},{2,3,5}}
  {{1,2,4},{3,4,5}}
  {{1,2,5},{1,3,4}}
  {{1,2,5},{2,3,4}}
  {{1,2,5},{3,4,5}}
  {{1,3,4},{2,3,5}}
  {{1,3,4},{2,4,5}}
  {{1,3,5},{2,3,4}}
  {{1,3,5},{2,4,5}}
  {{1,4,5},{2,3,4}}
  {{1,4,5},{2,3,5}}
The following are non-isomorphic representatives of the 10 unlabeled 3-uniform hypergraphs on 7 vertices where every two edges have exactly one vertex in common, and their multiplicities in the labeled case, which add up to a(7) = 3216.
    1 X {}
   35 X {{1,2,3}}
  315 X {{1,2,5},{3,4,5}}
  105 X {{1,2,7},{3,4,7},{5,6,7}}
  840 X {{1,3,5},{2,3,6},{4,5,6}}
  840 X {{1,4,5},{2,4,6},{3,4,7},{5,6,7}}
  210 X {{1,2,4},{1,3,5},{2,3,6},{4,5,6}}
  630 X {{1,4,5},{2,3,5},{2,4,6},{3,4,7},{5,6,7}}
  210 X {{1,3,6},{1,4,5},{2,3,5},{2,4,6},{3,4,7},{5,6,7}}
   30 X {{1,2,7},{1,3,6},{1,4,5},{2,3,5},{2,4,6},{3,4,7},{5,6,7}}
		

Crossrefs

Programs

  • Mathematica
    stableSets[u_,Q_]:=If[Length[u]===0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r===w||Q[r,w]||Q[w,r]],Q]]]];
    Table[Length[stableSets[Subsets[Range[n],{3}],Length[Intersection[#1,#2]]!=1&]],{n,8}]

Formula

Binomial transform of A323298.

Extensions

Terms a(11) and beyond from Andrew Howroyd, Aug 14 2019

A362381 E.g.f. satisfies A(x) = exp(x + x^3/6 * A(x)).

Original entry on oeis.org

1, 1, 1, 2, 9, 41, 191, 1191, 9353, 77897, 704861, 7352621, 85323921, 1058023825, 14155416003, 206100005931, 3217934262481, 53320102598481, 939087824434009, 17562552535939705, 346668611080774081, 7196193133818592961, 156944931623033340711
Offset: 0

Views

Author

Seiichi Manyama, Apr 20 2023

Keywords

Crossrefs

Column k=1 of A362378.

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(x-lambertw(-x^3/6*exp(x)))))

Formula

E.g.f.: exp(x - LambertW(-x^3/6 * exp(x))) = -6 * LambertW(-x^3/6 * exp(x))/x^3.
a(n) = n! * Sum_{k=0..floor(n/3)} (1/6)^k * (k+1)^(n-2*k-1) / (k! * (n-3*k)!).

A323292 Number of 3-uniform hypergraphs spanning n labeled vertices where no two edges have two vertices in common.

Original entry on oeis.org

1, 0, 0, 1, 0, 15, 160, 4125, 193200, 19384225
Offset: 0

Views

Author

Gus Wiseman, Jan 10 2019

Keywords

Examples

			The a(5) = 15 hypergraphs:
  {{1,2,3},{1,4,5}}
  {{1,2,3},{2,4,5}}
  {{1,2,3},{3,4,5}}
  {{1,2,4},{1,3,5}}
  {{1,2,4},{2,3,5}}
  {{1,2,4},{3,4,5}}
  {{1,2,5},{1,3,4}}
  {{1,2,5},{2,3,4}}
  {{1,2,5},{3,4,5}}
  {{1,3,4},{2,3,5}}
  {{1,3,4},{2,4,5}}
  {{1,3,5},{2,3,4}}
  {{1,3,5},{2,4,5}}
  {{1,4,5},{2,3,4}}
  {{1,4,5},{2,3,5}}
Non-isomorphic representatives of the 3 unlabeled 3-uniform hypergraphs spanning 6 vertices where no two edges have two vertices in common, and their multiplicities in the labeled case which add up to a(6) = 160:
   10 X {{1,2,3},{4,5,6}}
  120 X {{1,3,5},{2,3,6},{4,5,6}}
   30 X {{1,2,4},{1,3,5},{2,3,6},{4,5,6}}
		

Crossrefs

Programs

  • Mathematica
    stableSets[u_,Q_]:=If[Length[u]===0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r===w||Q[r,w]||Q[w,r]],Q]]]];
    Table[Length[Select[stableSets[Subsets[Range[n],{3}],Length[Intersection[#1,#2]]>=2&],Union@@#==Range[n]&]],{n,6}]

Formula

Inverse binomial transform of A323293. - Andrew Howroyd, Aug 14 2019

Extensions

a(9) from Andrew Howroyd, Aug 14 2019

A323298 Number of 3-uniform hypergraphs spanning n labeled vertices where every two edges have exactly one vertex in common.

Original entry on oeis.org

1, 0, 0, 1, 0, 15, 150, 1815, 0, 945, 0, 10395, 0, 135135, 0, 2027025, 0, 34459425, 0, 654729075, 0, 13749310575, 0, 316234143225, 0, 7905853580625, 0, 213458046676875, 0, 6190283353629375, 0, 191898783962510625, 0, 6332659870762850625, 0, 221643095476699771875
Offset: 0

Views

Author

Gus Wiseman, Jan 11 2019

Keywords

Comments

The only way to cover more than 7 vertices is with edges all having a single common vertex. For the special cases of n = 6 or n = 7, there are also covers without a common vertex. - Andrew Howroyd, Aug 15 2019

Examples

			The a(5) = 15 hypergraphs:
  {{1,4,5},{2,3,5}}
  {{1,4,5},{2,3,4}}
  {{1,3,5},{2,4,5}}
  {{1,3,5},{2,3,4}}
  {{1,3,4},{2,4,5}}
  {{1,3,4},{2,3,5}}
  {{1,2,5},{3,4,5}}
  {{1,2,5},{2,3,4}}
  {{1,2,5},{1,3,4}}
  {{1,2,4},{3,4,5}}
  {{1,2,4},{2,3,5}}
  {{1,2,4},{1,3,5}}
  {{1,2,3},{3,4,5}}
  {{1,2,3},{2,4,5}}
  {{1,2,3},{1,4,5}}
The following are non-isomorphic representatives of the 5 unlabeled 3-uniform hypergraphs spanning 7 vertices in which every two edges have exactly one vertex in common, and their multiplicities in the labeled case, which add up to a(7) = 1815.
  105 X {{1,2,7},{3,4,7},{5,6,7}}
  840 X {{1,4,5},{2,4,6},{3,4,7},{5,6,7}}
  630 X {{1,4,5},{2,3,5},{2,4,6},{3,4,7},{5,6,7}}
  210 X {{1,3,6},{1,4,5},{2,3,5},{2,4,6},{3,4,7},{5,6,7}}
   30 X {{1,2,7},{1,3,6},{1,4,5},{2,3,5},{2,4,6},{3,4,7},{5,6,7}}
From _Andrew Howroyd_, Aug 15 2019: (Start)
The following are non-isomorphic representatives of the 2 unlabeled 3-uniform hypergraphs spanning 6 vertices in which every two edges have exactly one vertex in common, and their multiplicities in the labeled case, which add up to a(6) = 150.
    120 X {{1,2,3},{1,4,5},{3,5,6}}
     30 X {{1,2,3},{1,4,5},{3,5,6},{2,4,6}}
(End)
		

Crossrefs

Programs

  • Mathematica
    stableSets[u_,Q_]:=If[Length[u]===0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r===w||Q[r,w]||Q[w,r]],Q]]]];
    Table[Length[Select[stableSets[Subsets[Range[n],{3}],Length[Intersection[#1,#2]]!=1&],Union@@#==Range[n]&]],{n,10}]
  • PARI
    a(n)={if(n%2, if(n<=3, n==3, if(n==7, 1815, n!/(2^(n\2)*(n\2)!))), if(n==6, 150, n==0))} \\ Andrew Howroyd, Aug 15 2019

Formula

a(2*n) = 0 for n > 3; a(2*n-1) = A001147(n) for n > 4. - Andrew Howroyd, Aug 15 2019

Extensions

Terms a(13) and beyond from Andrew Howroyd, Aug 15 2019

A351929 Expansion of e.g.f. exp(x - x^3/6).

Original entry on oeis.org

1, 1, 1, 0, -3, -9, -9, 36, 225, 477, -819, -10944, -37179, 16875, 870507, 4253796, 2481921, -101978919, -680495175, -1060229088, 16378166061, 145672249311, 368320357791, -3415036002300, -40270115077983, -141926533828299, 882584266861701, 13970371667206176
Offset: 0

Views

Author

Seiichi Manyama, Feb 26 2022

Keywords

Crossrefs

Programs

  • Mathematica
    m = 27; Range[0, m]! * CoefficientList[Series[Exp[x - x^3/6], {x, 0, m}], x] (* Amiram Eldar, Feb 26 2022 *)
  • PARI
    my(N=40, x='x+O('x^N)); Vec(serlaplace(exp(x-x^3/6)))
    
  • PARI
    a(n) = n!*sum(k=0, n\3, (-1/3!)^k*binomial(n-2*k, k)/(n-2*k)!);
    
  • PARI
    a(n) = if(n<3, 1, a(n-1)-binomial(n-1, 2)*a(n-3));

Formula

a(n) = n! * Sum_{k=0..floor(n/3)} (-1/6)^k * binomial(n-2*k,k)/(n-2*k)!.
a(n) = a(n-1) - binomial(n-1,2) * a(n-3) for n > 2.

A351932 Number of set partitions of [n] such that block sizes are either 1 or 4.

Original entry on oeis.org

1, 1, 1, 1, 2, 6, 16, 36, 106, 442, 1786, 6106, 23596, 120836, 631632, 2854216, 13590396, 81258556, 510768316, 2839808572, 16008902296, 108643656136, 787965516416, 5161270717296, 33513036683512, 253407796702776, 2065728484459576, 15485032349429176, 113510664648701776
Offset: 0

Views

Author

Seiichi Manyama, Feb 26 2022

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1,
         `if`(n<4, 0, a(n-4)*binomial(n-1, 3))+a(n-1))
        end:
    seq(a(n), n=0..28);  # Alois P. Heinz, Feb 26 2022
    seq(round(evalf(hypergeom([-n/4,(1-n)/4,(2-n)/4,(3-n)/4],[],32/3))),n=0..28);  # Karol A. Penson, Jul 28 2023
  • PARI
    my(N=40, x='x+O('x^N)); Vec(serlaplace(exp(x+x^4/4!)))
    
  • PARI
    a(n) = n!*sum(k=0, n\4, 1/4!^k*binomial(n-3*k, k)/(n-3*k)!);
    
  • PARI
    a(n) = if(n<4, 1, a(n-1)+binomial(n-1, 3)*a(n-4));

Formula

E.g.f.: exp(x + x^4/24).
a(n) = n! * Sum_{k=0..floor(n/4)} (1/24)^k * binomial(n-3*k,k)/(n-3*k)!.
a(n) = a(n-1) + binomial(n-1,3) * a(n-4) for n > 3.
a(n) = hypergeom([-n/4,(1-n)/4,(2-n)/4,(3-n)/4],[],32/3), Karol A. Penson, Jul 28 2023.
Showing 1-10 of 10 results.